© Skyfox Publishing Group

Available online at http://www.skyfox.co

Review ARTICLE Review on Microbial remediation of Heavy metals from E-waste

Pradeepa. R^{1*} Senthil kumar. P¹ and Kavitha K.K²

^{1*&1} Research scholar, Department of Environmental and Herbal Science, Tamil University, Thanjavur- 613010
² Assistant Professor, Department of Environmental and Herbal Science, Tamil University, Thanjavur- 613010
*Author to whom correspondence should be addressed/E-Mail: pradeepabt@gmail.com
Received: Mar 2017 / Accepted: Mar 2017/ Published: Mar 2017

ABSTRACT: E-waste is an end of the life span of electric or electronic appliances which contain the complex heavy metals. It is causing severe health concerns for millions of people around the world, mostly in the developing nations of India, Africa, Europe, etc. More of these wastes are ending up in dumping yards and recycling centers, cause a new challenge to the environment. In general electronic gadgets are intended to make our lives happier and simpler, but their toxicity, removal and recycling becomes a health horrendous. Many research papers have been reported on microbial remediation of heavy metals present in E-waste. The pioneer work was reported on 1998, bio-dissolution of spent nickel batteries using *Thiobacillus ferroxidans*, which is the first step to recycle and discarded batteries by using microbes as eco-friendly method. This review paper provides an insight in to the bioremediation of heavy metals from E-waste by potential microorganisms, in an eco-friendly way and provide pathway for current researchers.

Keywords: E-waste (Electronic and electric) waste, Bioremediation, Heavy metals, Thiobacillus ferroxidans.

INTRODUCTION

The revolution brought by information and communication in twentieth century brought enormous changes in the way we organize our lives, our economies, industries and institutions (Devendra S Verma, 2014). In most of the developing and underdeveloped countries, e-waste is dumped directly into the soil without any treatment; often due to weak environmental regulations and financial problems. For profitable recovery of materials and sustainable environment, the efficient recycling of electronic waste is very necessary, and is still regarded as a major challenge for today's society (Shubham Gupta, 2014).

According to Centre of Science and Environment's latest reports, every year our country is producing 3, 50,000 tonnes of ewaste, 5,0000 tonnes of electronic waste is imported but only 19000 tonnes is rejected. Out of total e-waste 10 states contribute about 70% of e-waste, leading states are- Maharashtra, Tamil Nadu, Andhra Pradesh, Uttar Pradesh. E-waste is highly complex to handle due to its composition. It is made up of multiple components some of which contain toxic substances that have an adverse impact on human health and environment if not handled properly and mixed with municipal waste.

Electronic wastes can cause widespread environmental damage due to the use of toxic materials in the manufacture of electronic goods (Mehra, 2004). H azardous materials in one form or the other are present in such wastes primarily consisting of electronic equipment. Even though it is hardly known, E-waste contains toxic substances such as Lead and Cadmium in circuit boards, lead oxide and Cadmium in monitor Cathode Ray Tubes, cables and polyvinyl chloride cable insulation that releases highly toxic dioxins and furans when burned to recover Copper from the wires.

All electronic equipment contains printed circuit boards which are dangerous because of their content of lead. The microorganisms for remediation of complex or co-contaminated system, they must possess tolerance and detoxification abilities towards different types of pollutants. These properties help them prolong and bioremediation in complex and mixed polluted systems like e-waste.

Microbes possessing such novel properties can be either isolated from natural contaminated sources (soil contaminated with ewaste or leachate from e-waste landfill sites), or obtained through engineering processes. Such microbes, individually or as consortia, can be used for decontamination of e-waste. Certain microorganisms with their unique tolerance mechanisms are able to grow and degrade or transform toxicants into nontoxic forms. (Amrik Bhattacharya, 2016).

Categories of E-waste

It can be categories on the basis of hazardous and non- hazardous waste and more than one thousands e- waste comes under this category (Wath *et al.*, 2010). According to the European Union electrical and electronic equipment available on the market have divided e-waste types into ten categories such as Large household Appliances, Small household appliances, IT and telecommunications

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

Available online at http://www.skyfox.co

,Equipment, Consumer equipment, Light equipment, Electrical and electronic tools, Toys, leisure, and sports, Equipment, Medical devices, Monitoring and control Instruments, Automatic dispensers.

Techniques used to handle E-waste

There are basically four ways in which e-waste has been treated till date. But none has been found to be fully satisfactory. The first and most common one has been storing e-wastes in landfills, but it is replete with all the dangers of leaching. The hazardous effects are worse in the older or less stringently maintained landfills or dumpsites. The second method commonly used has been to incinerate or burn the goods, but this process releases heavy metals such as lead, cadmium and mercury into the atmosphere. The third and the fourth methods are reusing and recycling of E-wastes. They have been preferable because they increase the lifespan of the products and therefore imply less waste over time. These are the four different and common method used to handle the waste all over the world. Each method has its own drawbacks and limitations. (Bikashdev Chhura, *et al.*, 2015). To facilitate take the edge off e-waste problems, there are investigations in term of the quantity, character and potential environmental and human health impacts of e-waste and broad research into e-waste management.

S.No	Metals	Source of Metals	Microorganism	Bioremediation	Reference
		Studied		Process/Methods	
1.	Cu	Cu- rich e-waste	Acidithiobacillus ferroxidans, Acidithiobacillus thiooxidans	Bioleaching	Saidan and M.Valix, 2006
			Aspergillus niger		
2.	Cu	Waste Printed circuit board (PCB)	Bacterial consortium enriched from natural acid mine drainge	Bioleachning	Yun Xiang, et al., 2010
3.	Au, Ag	РСВ	-	Manual	Chatterjee, et al., 2009
4.	Cr, Pb, Cu	Solid & Liquid Waste	Staphylococcus saprophyticus,	Biosorption	Ashok kumar, et al., 2011
5.	Ni	РСВ	mesophilic chemolititrophic bacterial culture of <i>A. ferrooxidans</i> <i>and A. thiooxidans</i>	Bioleaching	Anna Mrazikova, 2014
6.	Au	E waste	Chromobacterium violaceum, Pseudomonas fluorescens, Pseudomonas aeruginosa and Escherichia coli.	Bioleaching	Chang jin Liang, et al., 2011
7.	Cu, Al, Zn	РСВ	Mixed culcture of Acidophilic Bacteria	Bioleachning	Nengwu Zhu, et al., 2011
8.	Cu, Ni, Al, Zn	Electronic scrap	Acidithiobacillus ferroxidans Acidithiobacillus thiooxidans	Bioleaching	Willner, et al., 2013 and Kavitha, 2014.
9.	Cu, Ni, Al, Zn	Electronic scrap	Acidithiobacillus ferroxidans, Acidithiobacillus thiooxidans	Bioleaching	Brandl, et al., 2001
10.	Cu, Ni, Sn, Pb, Zn, Al	Electronic scrap	Aspergillus niger Penicillium simplicissimum	Bioleaching	Brandl, et al., 2001
11.	Cu	РСВ	Acidithiobacillus ferroxidans	Bioleaching	Tao yang, et al., 2009
12.	Cu	Printed wire	Acidithiobacillus	Bioleaching	Jingwei wang et

Table: 1.Microbial Remediation of Heavy metals present in E-waste

124

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

Available online at http://www.skyfox.co

		boards	ferroxidans, Acidithiobacillus thiooxidans A. ferroxidans + A.		al., 2009
13.	Ni, Cu, Al,	Electronic scrap	hiooxidans Sulfobacillus	Bioleaching	Ilyas, <i>et al.,</i> 2007
14.	Zn, Pb, Sn Cu, Al, Zn, Ni	Electronic scrap	thermosulfidooxidans Thermosulfidooxidans sulfobacillus + Thermoplasma acidophilum	Column Bioleaching	Ilyas, <i>et al.,</i> 2010
15.	Au	Printed electronic circuits	Chromobacterium violaceum	Bioleaching	Faramarzi, et al 2004
16.	Li, Co	Lithium batteries	Acidithiobacillus ferroxidans	Bioleaching	Joanna willner, 2013
17.	Li, Co	Lithium batteries	Acidithiobacillus ferroxidans	Bacterial leaching	Debaraj Mishra, <i>et al.,</i> 2008
18.	Ag, Au, Pt	Jewellery waste, automobile catalytic converter, electronic scrap	Chromobacterium violaceum, Pseudomonas fluorescens, Pseudomonas plecoglossicida	Biomobilization	Brandl, et al., 2008
19.	Ni,Co, Cr &Mn	Ores	Acidithiobacillus ferroxidans	Biomining	Barrie Johnson, <i>et al.,</i> 2013
20.	Zn, Ni, Pb	РСВ	Acidithiobacillus ferroxidans	Bioleaching	Joanna willner, 2012
21.	Ni, Cd	Spent Ni - Cd batteries:	Acidithiobacillus ferroxidans	Bioleaching	O.Velgosova, , <i>et</i> <i>al.</i> , 2012 and O.Velgosova, <i>et</i> <i>al.</i> , 2014
22.	Cu, Au, Zn, Fe	E waste	Chromobacterium violaceum, Pseudomonas aeruginosa, Pseudomonas fluorescens	Bioleaching	Jatindra Kumar Pradhan <i>, et al.,</i> 2012
23.	Au, Cu, Ni	Cellular phone PCBs and Computer gold finger motherboards	Aspergillus niger MXPE6 + Aspergillus niger MX7,	Bioleaching	Jorge Enrique Madrigal-Arias <i>, et</i> <i>al.,</i> 2014
24.	Cu, Zn, Ni	РСВ	Acidiphilium acidophilum	Bioleaching	Rivero Hudec, et al., 2009
25.	Cu, Cd, Pb	Electroplating industrial effluent samples	Bacillus sp, Pseudomonas sp. Micrococcus sp.	Biosorption	Johncy Rani, et al., 2010
26.	Ni, Au, Cu	Nickel powder, PCB scrap	C. violaceum, P. fluorescens, B. megaterium	Microbial mobilization	Mohammad Faramarzia <i>, et al.,</i> 2004
27.	Pb, As, Cd, Ni, Cu, Zn, Al, Co, Mn	Mine Waste Disposal Sites	Sulfobacillus sp. Sulfidobacillus sp. Acetobacter acidophilum	Biosorption	Petrisor, <i>et al.,</i> 2002

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

Г

Available online at http://www.skyfox.co

			Alcaligenes entrophus Pseudomonas putida		
28.	Cd	E waste	Pseudomonas puttaa Pseudomonas aeruginosa JN102340	Biosorption	Kumar, 2014
29.	РЬ	E waste	Aspergillus fumigatus	Biosorption	Rajesh kumar Ramasamy, et al., 2011
30.	Cd	E waste	Aspergillus sp.	Biosorption	Ramasamy Rajesh Kumar, et al., 2012
31.	Mn	E waste	Helminthosporium solani	Biosorption	Savitha, et al., 2010
32.	Ni, Cd	Bio-dissolution of spent Nickel- Cadmium batteries	At. ferrooxidans	Bioleaching	Cerruti, et al., 1998
33.	Ni , Cd	Spent Nickel- Cadmium batteries	Indigenous acidophilic thiobacilli	Bioleaching	Zhu et al , 2003
34.	Ni , Cd	Spent Ni-Cd battery	At. ferrooxidans, & At. thiooxidans	Bioleaching	O. Velgosova, et al., 2010
35.	Cu	PCB of waste Computer	Acidithiobacillus ferroxidans	Bioleaching	Choi, et al., 2004
36.	Cu, Pb, Zn	Printed wire boards	Acidithiobacillus ferroxidans,+ Acidithiobacillus thiooxidans	Bioleaching	Wang, et al., 2009
37.	Cu, Ni, Zn	РСВ	Acidithiobacillus thiooxidans Acidithiobacillus ferrooxidans	Bioleaching	Liang, et al., 2010
38.	Ag	Waste photographic films	Bacillus subtilis ATCC 6633	Enzymatic Method	Nakiboglu, et al., 2001
39.	Ag	Waste X-ray film	Conidiobolus coronatus	Enzymatic Method	Shankar, <i>et al.,</i> 2010
40.	Ag	X-ray films	Bacillus sphaericus	Enzymatic Method	Singh, et al., 1999
41.	Ag	Lith Film	Bacillus sp. B21–2	Enzymatic Method	Masui, et al.,2004
42.	Cr, Cu, Ni, Co, Cd, and Zn	Dumping municipal soil area	Pseudomonas spp. Bacillus spp	Resistance	Ersoy Sevgi, <i>et al.,</i> 2009
43.	Cd	Contaminated site	Pseudomonas aeruginosa S22	Resistance	El-Sayed, et al.,2008
44.	Uranium	Mine waste	Pseudomonas aeruginosa	Biosorption	Michael Z. and Hu, <i>et al.</i> ,1996
45.	Hg, Pb, Ag, ZN, Cu,	Industry waste	Bacillus species	Bioaccumulation	Meghraj Hookoom <i>, et al.,</i>

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

Available online at http://www.skyfox.co

					2013
46.	Ar, Pb, Cd	E waste	A.Thioxidans, Micrococcus roseus, T. ferrooxidans, Aspergillus fumigates, A. niger	Bioleaching	Stephen , Macnaughtont, 1999,and Shuchi Patel <i>et al.,</i> 2014
47.	Cr, Ur, Cd, Pb	Industrial waste	Bacillus sphaericus, Myxococcus Xanthus, Pseudomonas aeruginosa, Streptoverticillium Cinnamoneum, Rhizopus arrhizus, Saccharomyces cerevisiae	Biosorption	Hu, et al., 1996, Atkinson, et al., 1998; Ahalya et al., 2003 and Shuchi Patel etal, 2014
48.	Cr, Ur, Pb	Heavy metal presenting waste	Bacillus circulans , Bacillus megaterium, Deinococcus radiodurans , Micrococcus luteus, Aspergillus niger, Monodictys pelagic	Bioaccumulation	Demirba , 2001; Srinath, et al., 2002, Malik, 2004; Juwarkar, Yadav, 2010 and Shuchi Patel, et al., 2014
49.	Ur, Cr, Cd	Heavy metal presenting waste	Anaeromyxobacter sp. Clostridium sphenoides Halomonas sp. Serratia sp. Fusarium oxysporum Rhizopus oryzae	Biotransformation	Lovley and Coates, 1997; Francis, 1998; Malik, 2004 and Shuchi Patel, <i>et</i> <i>al.</i> , 2014
50.	Cu	Electronic Waste	Acidithiobacillus bacteria	Bioleaching	Saidan, <i>et al.,</i> 2012
51.	Au	Cellular phone Printed circuit board	A. niger MXPE6 and A. niger MX7	Bioleaching	Madrigal-Arias, 2015
52.	Cu	Printed circuit board	S. thermosulfidooxidans	Bioleaching	Rodrigues, et al., 2015
53.	Ni, Cu, Al, Zn	Electronic scrap	S. thermosulfidooxidans and acidophilic heterotrophy (code A1TSB)	Bio solubilization	Tang, et al., 2016
54.	Pb	E waste landfill	Bacillus licheniformis	Biosorption	Gayatri, <i>et al.,</i> 2017

Ar-Arsenic, Pb- Lead, Cd-Cadmium, Cr- Chromium, U-Uranium, Ni- Nickel, Cu-Copper, Al-Alumnium, Zn-Znic, Sn-, Co-cobalt, Mn-Manganese, Ag-Silver, Fe-Ferrous, Pt-Platinum, Li-Lithium, Au- Gold

CONCLUSION

E-Waste containing toxic metals which need to be remediated efficiently from contaminated surroundings. To reduce the toxic metals effect on environment and living beings. Biological methods one of the potential methods to minimize the toxicity associated with e-waste contaminants in sustainable way. So we need to spread the awareness of proper handling of E-waste such as reduce, reuse and safe recycle process.

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

Available online at http://www.skyfox.co

REFERENCES

- 1. Ahalya, N., T. V. Ramachandra R. D. Kanamadi. 2003. Biosorption of heavy metals. Res. J. Chem. Environ, 7(4), 71-79.
- 2. Amrik Bhattacharya, S. K. Khare, 2016. Sustainable options for mitigation of major toxicants originating from electronic waste, Current Science, 111(12):1946-1954.
- 3. Anna Mrazikova, Renata Marcincakova, Jana Kadukova, Oksana Velgosova. 2014. Nickel recovery from printed circuit boards using acidophilic bacteria, Journal of the Polish Mineral Engineering Society, 51-54.
- 4. Ashok Kumar, B.S. Bisht, V.D. Joshi. 2011. Bioremediation potential of three acclimated bacteria with reference to heavy metal removal from waste, International Journal of Environmental Sciences, 2(2): 896-908.
- 5. Atkinson, B. W., F.Bux, and H. C. Kasan, 1998. Considerations for application of biosorption technology to remediate metalcontaminated industrial effluents, Water S. A, 24(2): 129-135.
- 6. Barrie Johnson, D., Barry M. Grail, Kevin B. Hallberg. 2013. A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores, Minerals, 3: 49-58.
- 7. Bikashdev Chhura, Gurjeet Kaur and Manoj Makhija, 2015. E –waste: A new challenge and approach for India: An Overview, Protagonist International journal of management and technology, 2(2), Online ISSN- 2394-3742.
- 8. Brandl, H, R .Bosshard, M .Wegmann. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi, Hydrometallurgy, 59: 319-326.
- 9. Brandl, H., S. Lehmann, M.A. Faramarzi, D. Martinelli. 2008. Biomobilization of silver, gold and platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy, 94 (1-4): 14.
- 10. Cerruti, C., G. Curutchet, E. Donati. 1998. Bio-dissolution of spent nickel-cadmium batteries using *Thiobacillus ferrooxidans*, Journal of Biotechnology, 62: 209-219.
- 11. Changjin Liang, Jingying Li, Chuanjing Ma. 2014. Review on cyanogenic bacteria for gold recovery from E- Waste, Advanced Materials Research, 878: 355-367.
- 12. Chatterjee, S., Krishna Kumar. 2009. Effective electronic waste management and recycling process involving formal and nonformal sectors, International Journal of Physical Sciences, 4(13):893-905.
- 13. Choi, M., K. Cho, D.S. Kim, D.J. Kim. 2004. Microbial recovery of copper from printed circuit boards of waste computer by *Acidithiobacillus ferrooxidans*, Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances and Environmental Engineering, 39: 2973-2982.
- 14. Debaraj Mishra, Dong-Jin Kim, D.E. Ralph, Jong-Gwan Ahn and Young-Ha Rhee. 2008. Bioleaching of metals from spent lithium ion secondary batteries using *Acidithiobacillus ferrooxidans*, Waste Management, 28: 333-338.
- 15. Demirba, A. 2001. Heavy metal bioaccumulation by mushrooms from artificially fortified soils, Food Chemistry, 74(3): 293-301.
- 16. Devendra S Verma and Shekhar Agrawal, 2014. E-waste management in India: Problems and Legislations, International Journal of Science Engineering and Technology Research, 3(7):
- 17. El-Sayed, M. Soltan, Rehab, M. Mohamed and Ahmed, A. Shoreit. 2008. Behavioral response of resistant and sensitive *Pseudomonas aeruginosa* S22 isolated from Sohag Governorate, Egypt to cadmium stress, African Journal of Biotechnology, 7 (14): 2375-2385.
- 18. Ersoy Sevgi, Gokhan Coral, A. Murat Gizir and M. Kemal Sangun, 2010. Investigation of heavy metal resistance in some bacterial strains isolated from industrial soils, Turk J Biol, 34: 423-431.
- 19. Faramarzi, M.A., M. Stagars, E. Pensini, W. Krebs and H. Brandl. 2004. Metal solubilization from metal containing solid materials by *cyanogenic Chromobacterium violaceum*, Journal of Biotechnology, 113 (1, 2): 321.
- 20. Faramarzi, M.A., M. Stagars, E. Pensini, W. Krebs and H. Brandl. 2004. Metal solubilization from metal-containing solid materials by cyanogenic *Chromobacterium violaceum*, Journal of Biotechnology, 113: 321-326.
- 21. Francis, A. J. 1998. Biotransformation of uranium and other actinides in radioactive wastes, Journal of Alloys and Compounds, 27: 78-84.
- 22. Gayatri, Y., Shailaja Raj M, Vijayalakshmi, 2017. Biosorption of lead by Bacillus licheniformis isolated from E-waste landfill, Hyderabad, Telangana, India. International Journal of Bioassays 6(2): 5240-5244.
- 23. Ilyas, S., C. H. Ruan, H.N. Bhatti, M.A. Ghauri and M.A.Anwar. 2010. Column bioleaching of metals from electronic scrap, Hydrometallurgy, 101 (3, 4): 135.
- 24. Ilyas, S., M.A. Anwar, S.B. Niazi and M.A. Ghauri. 2007. Bioleaching of metals from electronic scrap by moderately thermophilic *acidophilic bacteria*, Hydrometallurgy, 88 (1-4): 180.

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

- 25. Jatindra Kumar Pradhan, Sudhir Kumar. 2012. Metals bioleaching from electronic waste by *Chromobacterium violaceum* and *Pseudomonads sp*, Waste Management & Research, 30(11): 1151–1159.
- 26. Jingwei Wang, Jianfeng Bai, Jinqiu Xu and Bo Liang. 2009. Bioleaching of metals from printed wire boards by *Acidithiobacillus Ferrooxidans* and *Acidithiobacillus Thiooxidans* and their mixture, Journal of Hazard. Mater, 172 (2, 3): 1100.
- 27. Joanna Willner, Agnieszka Fornalczyk. 2013. Extraction of metal from electronic waste by bacterial leaching, Environment Protection Engineering, 39: 197-208.
- 28. Joanna Willner. 2012. Leaching of selected heavy metals from electronic waste in the presence of the *At. ferrooxidans* bacteria, Journal of Achievements in Materials and Manufacturing Engineering ,55(2):860-863.
- 29. Johncy Rani, M., B. Hemambika, J. Hemapriya and V. Rajesh Kannan. 2010. Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach, African Journal of Environmental Science and Technology, 4(2): 077-083.
- 30. Jorge Enrique Madrigal-Arias, Rosalba Argumedo-Delira, Alejandro Alarcon, Ma. Remedios Mendoza-Lopez, Oscar Garcia-Barradas, Jesus Samuel Cruz-Sanchez, Ronald Ferrera-Cerrato and Maribel Jimenez-Fernandez. 2015. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer gold finger motherboards by two Aspergillus niger strains, Brazilian Journal of Microbiology, 46 (3): 707-713.
- 31. Juwarkar, A. A., and S. K. Yadav. 2010. Bioaccumulation and Biotransformation of Heavy Metals in Bioremediation Technology, Springer.
- 32. Kavitha, A. V.2014. Extraction of Precious Metals from E-Waste, Journal of Chemical and Pharmaceutical Sciences, 3 147-149.
- **33.** Kumar, R.R. 2014. Isolation, Molecular identification of metal tolerant bacteria and its heavy metal removal capacity, International Journal of Microbiology, Biochemistry and Molecular Biology.
- 34. Liang, G., Y. Mo, Q. Zhou. 2010. Novel strategies of bioleaching metals from printed circuit boards (PCBs) in mixed cultivation of two acidophiles, Enzyme and Microbial Technology, 47: 322-326.
- 35. Lovley, D. R., and J. D. Coates. 1997. Bioremediation of metal contamination, Current Opinion in Biotechnology. 8(3): 285-289.
- **36.** Madrigal-Arias, J. E. *et al.*, 2015. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Br. J. Microbiol, 46(3): 707-713.
- 37. Malik. A. 2004. Metal bioremediation through growing cells, Environment International, 30(2): 261-278.
- **38.** Masui, A., M. Yasuda, N. Fujiwara and H. Ishikawa. 2004. Enzymatic hydrolysis of gelatin layer on used lith film using thermostable alkaline protease for the recovery of silver and PET film, Biotechnology Progress, 20: 1267-1269.
- **39.** Meghraj Hookoom and Daneshwar Puchooa. 2013. Isolation and Identification of Heavy Metals Tolerant Bacteria from Industrial and Agricultural Areas in Mauritius, Current Research in Microbiology and Biotechnology, 1(3): 119-123.
- 40. Mehra H.C., 2004. PC waste leaves toxic taste, The Tribune, 22nd March.
- 41. Michael Z.-C. Hu, John M. Norman, Brendlyn D. Faison and Mark E. Reeves. 1996. Biosorption of uranium by *Pseudomonas aeruginosa* strain CSU: Characterization and comparison studies, J. of Biotechnology and Bioenginering, 51 (2): 237-247.
- 42. Nakiboglu, N., D. Toscali, I. Yasa. 2001. Silver recovery from waste photographic films by an enzymatic method, Turkish Journal of Chemistry 25: 349-353.
- 43. Nengwu Zhu, Yun Xiang, Ting Zhang, Pingxiao Wu, Zhi Dang, Ping Li and Jinhua Wu. 2011. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria, Journal of Hazardous Materials, 192: 614-619.
- 44. Oksana Velgosova, Jana Kadukova, Renata Marcincakova. 2012. Study of ni and cd bioleaching from spent ni-cd batteries, Nova Biotechnologica et Chimica, 11-2:117-123.
- 45. Petrisor, I.G., K. Komnitsas, I. Lazar, A. Voicu, S. Dobrota and M. Stefanescu. 2002. Biosorption of Heavy Metals from Leachates Generated at Mine Waste Disposal Sites, The European Journal of Mineral Processing and Environmental Protection, 2(3): 1303-0868, 158-167.
- 46. Rajesh kumar Ramasamy, Shankar Congeevaram and Kaliannan Thamaraiselvi, 2014. Evaluation of isolated fungal strain from ewaste recycling facility for effective sorption of toxic heavy metal pb (ii) ions and fungal protein molecular characterization- a mycoremediation approach, Asian J. Exp. Biol. Sci, 2(2): 342-347.
- 47. Ramasamy, Rajesh Kumara, Jae Taek Leeb and Jae Young Chob. 2012. Toxic cadmium ions removal by isolated fungal strain from e-waste recycling facility, Journal of Environmental and Applied Bioresearch, 1(1): 1-4.
- 48. Rivero Hudec, M. A., M. Sodhi, D. Goglia-Arora. 2009. Biorecovery of metals from electronic waste, 7th Latin American and Caribbean Conference for Engineering and Technology.

http://dx.doi.org/10.22573/spg.ijals.017.s12200076

© Skyfox Publishing Group

All Rights Reserved

Available online at http://www.skyfox.co

- 49. .Rodrigues, M. L. M., Leao, V. A., Gomes, O., Lambert, F., Bastin, D. and Gaydardzhiev, S., 2015. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manage, 41, 148-158.
- 50. Saidan, M., M. Valix, 2011. Bioleaching of copper from electronic waste using *Aspergillus niger* and *Acidithiobacillus*, Conference Paper, Chemeca 2011: Engineering a Better World: 1779-1788.
- 51. Saidan, M., B. Brown and M. Valix. 2012. Leaching of Electronic Waste Using Biometabolised Acids, Chinese Journal of Chemical Engineering, 20(3): 530-534.
- 52. Savitha, J., N. Sahana, V.K. Praveen. 2010. Metal biosorption by Helminthosporium solani- a simple microbiological technique to remove metal from e-waste, Current Science, 98 (7); 903-904.
- 53. Shankar, S., S.V. More, R. Laxman. 2010. Recovery of silver from waste x-ray film by alkaline protease from *conidiobolus coronatus*, Kathmandu University Journal of Science, Engineering and Technology, 6: 60-69.
- 54. Shubham Gupta, Gaurav Modi, Rahul Saini and VijayaAgarwala, 2014. A review on various electronic waste recycling techniques and hazards due to its improper handling, International Refereed Journal of Engineering and Science, 3(5):05-17.
- 55. Shuchi Patel , Avani Kasture. 2014. E (Electronic) Waste Management using Biological systems-overview, Int.J.Curr.Microbiol.App.Sci, (3(7):495-504.
- 56. Singh, J., R.M. Vohra, D.K. Sahoo. 1999. Alkaline protease from a new obligate alkalophilic isolate of *Bacillus sphaericus*, Biotechnology Letter, 21: 921-924.
- 57. Srinath, T., T.Verma, P.W. Ramteke, and S. K. Garg. 2002. Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria, Chemosphere, 48(4): 427-435.
- 58. Stephen, J. R., S. J. Macnaughtont. 1999. Developments in terrestrial bacterial remediation of metals, Current Opinion in Biotechnology, 10(3): 230-233.
- 59. Tang, S., H. Yin, S. Zhou, S. Chen, H. Peng, Z. Liu and Z. Dang. 2016. Simultaneous Cr (VI) removal and 2,2,4,4-tetrabromodiphenyl ether (BDE-47) biodegradation by Pseudomonas aeruginosa in liquid medium. Chemosphere, 150, 24-32.
- **60.** Tao Yang, Zheng Xu, Jiankang Wen and Limei Yang. 2009. Factors influencing bioleaching copper from waste printed circuit boards by *Acidithiobacillus Ferrooxidans*, Hydrometallurgy, 97 (1, 2): 29.
- 61. Velgosova O, J.Kadukova, R. Marcincakova, A. Mrazikova, and L. Frohlich. 2014. The role of main leaching agents responsible for ni bioleaching from spent ni-cd batteries, Separation Science and Technology, 49(3): 438-444.
- 62. Velgosova, O., J. Kadukova, A. Mrazikova, A. Blaskova, M. Petoczova, H. Harvathova and M. Stofko. 2010. Influence of selected parameters on nickel bioleaching from spent nickel-cadmium batteries, Mineralia Slovaca, 42: 365-368.
- 63. Wang, J., J. Bai, J. Xu, and B. Liang. 2009. Bioleaching of metals from printed wire boards by *Acidithiobacillus ferrooxidans* and *Acidithiobacillus thiooxidans* and their mixture, Journal of Hazardous Materials, 172: 1100-1105.
- 64. Wath, Sushant B., Vaidya, Atul N., P.S. Dutt, Chakrabarti, Tapan, (2010). E-waste scenario in India, its management and implications, Environmental Monitoring and Assessment, 172: 249–262.
- 65. Yun Xiang, Pingxiao Wu, Nengwu Zhu, Ting Zhang, Wen Liu, Jinhua Wu, and Ping Li. 2010. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage, Journal of Hazardous Materials, 184: 812–818.
- 66. Zhu, N., L. Zhang, C. Li and C. Cai. 2003. Recycling of spent nickel-cadmium batteries based on bioleaching process, Waste Management, 23: 703-708.

How to cite this article

Pradeepa, R., Senthil kumar, P., & Kavitha, K. K. (2017). Review on Microbial remediation of Heavy metals from E-waste. Int. J. Agr. Life. Sci, 3(1), 123-130. doi: 10.22573/spg.ijals.017.s12200076.

CONFLICTS OF INTEREST

"The authors declare no conflict of interest".

© 2017 by the authors; licensee SKY FOX Publishing Group, Tamilnadu, India. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).