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UNIT-1I

LIMITS AND CONTINUITY, DIFFERENTIATION
LIMITS AND CONTINUTIY

1.0 Introduction

In this chapter we consider functions whose domain and range
are subsets of R and we consider the limit of such functions. This concept
of limit is basic to the study of continuous functions and differential
calculus.

The concept of differential coefficient and the operation called
differentiation are basic to the theory of differential calculus this chapter is
devoted to the study of differentiation and the algebra of derivatives.

1.1 Limits of a function
Definition

LetA € R. A function f: A — R is called a real valued function of
real variable.

Throughout this chapter we shall be concerned with such
functions only and in most cases the domain of the function is restricted to
an interval in R. It may happen that for a function f as x approaches closer
and closer to a the value f(x) approaches closer and closer to a definite
real numberl. For example if f(x) = x% + 1 then as x approaches closer to
closer to 2, f(x) approaches closer and closer to 5. We say that the limit of
f(x) = x? + 1astendsto 2 is 5, and we write }Ci_rg(x2 +1) =5.

x2-

Now, consider the function f(x) = We proceed to

x—1
investigate what happens when x approaches 1. In this case both
numerator and denominator approach 0. It would be meaningless to say

that the function approaches % since % is not a symbol for any number.

x2-1 x+1)(x—-1
However — = Grl)-1)
x—1 x—1

Also we are concerned with what is happening to the function as

= x + 1 provided x # 1.

x approaches 1 and not with what happens when x = 1. Moreover while x
2_
approaches 1,%and x + 1 have exactly the same values. Further x + 1

approaches 2 as x approaches 1.
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2_
Hence u approaches 2 as x approaches 1.

Thus 11m = 2.

x-1 X—

The precise meaning of this concept of limit is given in the
following definition.

Definition

A function f is said to approach to a limit [ as x tends to a if given
€ > 0 there exists § > 0 such that0 < |x —a| <d§ = |f(x) — | < eand
we write lim f(x) = L.

xXx—a
Note

1. It should be carefully noted that the condition0 < |x —a| < §
excludes the point x = a from consideration. Hence the definition of limit
employs only values of x in some interval (a — &,a + &§) other than a.
Hence the value of f(x) atx = ais immaterial and in fact to consider
chi_rlll f(x), f(x) need not be even defined at x = a. Even if f(a) is defined

it is not necessary that lim f(x) = f(a). (refer example 3 below).
x—a
2. To talk about lim f(x), it is necessary that the domain of
x—-a

definition of the function f must contain the set (a — §,a + 6) — {a} for
some & > 0. A subset A of R containing an interval of the form (a — §,a +
6) for some § > 0is called a neighborhood of a. Thus to talk about

lim f(x) it is necessary that f(x) must be defined in some neighbourhood
xXx—a

of a except perhaps at a.

Example 1

lim kx = ka where k is any non-zero real number.
xXx—a

Solution

Let € > 0 be given. Then |kx — ka| = |k||x — a]. Now choose § = |k| .

0<|x—a|<—=>|kx—ka|<|k||k|

» lim kx = ka.

Example 2
limx? = 0.
x—0
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Solution
Let € > 0 be given.
Then0 < |x| <Ve= |x2—0]|=x%< e

~limx? =
x—-0

Example 3

Let f(x) = {21’5 +3 ;}f;‘ ? 11.Then lim f(x) = 5.

Solution
Let € > 0 be given.
Now |2x + 3 — 5| = [2x — 2| = 2|x — 1].

Choose § = %s.

Then0 < |x— 1] <3e=|(x+3) =5 <2(3¢) =¢
lirqf(x) =5
Note that here f(1) = 10 so that lirq fl) = ().

X—

Example 4
=4.

x%-4

lim
x—2 X—2
Solution

Let € > 0 be given.

2_
Now, when x # 2,% =x+2.

2_
-4 =24l =1k -2l,
x—2
2_
~Ifwechoosed =¢,then 0< [x—2| <6 => xx_24—4| <e
L (xP-a\
Egg(x;z) =4
Exercise 1
Prove the following:
2_
1.1im(3x — 4) = 2 2.lim(1 —x) == 3.limE 2 =6
x—2 xq% 2 x—3 x—3
Lox%tx-2 . _
4';}1»@2?_ 3 S.L%(ax+ﬁ)—aa+ﬁ
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x ifx;t

6. Let f: R — R be defined by f(x) —{ if x =

0.

. Prove that 11m flx) =

We state without proof the following theorems on limits.

Theorem 1.1
If lim f(x) = land lim f(x) = m, thenl =m, (i.e) the limit of
x—-a x—a

f(x)asx = q,ifit exists, is unique.

Theorem 1.2
If lim f(x) =landlim g(x) =m, then lim[f(x) + g(x)] =1+
x—-a x—-a x—-a

Theorem 1.3
If lim f(x) =1, then lim k f(x) = kl where k is any real number.
xXx—a xXx—a

Theorem 1.4
If limf(x) =1landlim g(x) =m, then lim[f(x) —g(x)] =1—

Theorem 1.5
If lim f(x) =landlim g(x) = m, then lim f(x)g(x) =

Theorem 1.6

If lim f(x) = Land f(x) # 0 and L # 0, then llmf( ) ==

Theorem 1.7
If limf(x) =l and lim g(x) = m where m # 0 and g(x) # 0,

then lim ——= f(x) =L
x—a g(x) m

Theorem 1.8
If lim f(x) = [, then llmlf(x)l = |l].

x—a
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Theorem 1.9
Let f be a bounded function. Let limg(x) =0 . Then
x—a

lim f(x)g(x) = 0.

Theorem 1.10
If f(x) = 0and lim f(x) = [,thenl = 0.
x—a

Theorem 1.11
If f(x) < g(x) and lim f(x) = land lim g(x) = m, then | < m.
x—a x—a

Theorem 1.12
If gx) <f(x)<h(x) and limg(x) =limh(x) =1, then

lim f(x) exists and lim f(x) = [.
x—a x—-a

Theorem 1.13

limsin 8 = 0.
6-0

Theorem 1.14

limcosx = 1.
x—0

Theorem 1.15

lim sinx = sin a.
x—=a

Theorem 1.16
. sin6
}91{)1(1) 5 =1

Theorem 1.17
. 1\*
lim (1 + ;) =e.

X—00

Theorem 1.18

. tanx
lim =1
x—>0 X

Example 5
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Evaluate lin%(3 + 2x + 5x2 + 6x3).
X—

Solution
lirr%(3 + 2x + 5x2 + 6x3)
xX—

= lim 3 + lim 2x + lim 5x2 + lim 6x3
x—-2 xX-2 x—2 x—2

=3+2 (}Cl_rgx) +5 (}Ci_rgxz) + 6(}Ci_rgx3)
=3+4+20+48=75.

Example 6

If f(x) = ap + a;x + a,x? + - + a,x™, prove that lim f (x) = f(a).
x—-a

Solution

lim f(x) = lim(ay + a;x + a;x? + -+ + a,x")

x—-a x—-a

=limay + lima;x + -+ + lima,x™
xXx—a xXx—a x—a

=a,+a (lim x) +-+a, (lim x")

x—a xX—a

=ay+a,a+ -+ aza® = f(a).

Example 7
Evaluate lim (3x+4)
x—2 \ x—3

Solution

lim(x —3) = -1+ 0.

x—2

o lim 2 = 3151_.%(3x+4)
x—2 X—3 lim (x—3)

X2
== _10.
-1
Example 8

. x3+x2—x-1
Evaluate lim ——————
x-1

x—1
Solution
3 2 _ - 2
When x # 1,°07271 _ GoD(hvzaeel) _ a4 90 4 g,
x—1 x—1
3.2 .
A Im P im( 2+ 2x+ 1) =142+ 1 =4
x-1 x—-1 x—-1
Example 9
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Show that lim [x sm( )] =0.

x-0
Solution

Let f(x) = sin G) and g(x) = x.
Clearly |[f(x)] <1

~ f is a bounded function.

Also lil’I(l) gx) = lirr(l)x =0.

+ lim [x sin G)] =0 (by theorem 1.9)

x—0

Exercise 2
1. Evaluate the following limits:

(i) Li_rH(sz +3x—2) (ii) lim(2x3 — 5x)
(i) im 2222 () lim sz

0l i i £
(vii) }}_r}n — (viii) }gn%
) fim, =2 W Jim,
(xi) }Cllr(l) [x cosXx (;)]

2. Let f(x) =apx™+a;x™ 1+ +a, and g(x) = bgx™ + byx"" ! +

.-+ b,. Prove that lim ——= [ _ 1@ ¢ gla) # 0.
x—a g(x ) g(a)

1.2 Left and Right limits

While defining the limit of f(x) as x = a, we consider the
behavior of f(x) at points which are near to a and these points can be
either to the left of a or to the right of a. However it is often necessary to
know the behavior of f(x) as x tends to ain such a way that x always
remains greater than (or less than) a. This leads us to the concept of right
and left limits of f(x) atx = a.
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Definition

A function f is said to have [ as the right limit at x = a if given € >
0, there exists § > 0such that 0 <x—a <d§=|f(x) =l <eand we
write xlir‘§1+f(x) = L. Also we denote the right limit L at a by f(a +)

A function f is said to have [ as the left limit at x = a if given € >
0, there exists § > 0such that 0 <a—x<d§=|f(x) =] <eand we
write lim f(x) = L. Also we denote the left limit [ at a by f(a —)
Xx—a—

Theorem 1.19

lim f(x) =1 iff lim+f(x) = lim_f(x) =1.

(i.e.) lim f(x) exists iff the left limit and the right limit of f(x)atx = a
x—a

exist and are equal.

Note
If lim f(x) does not exist, then one of the following happens.
xXx—a

(i) lim+f(x) does not exist.

(ii) lim_f(x) does not exist.
(iii) lim f(x)and lim f(x) exist and are not equal.
x—a+ x—a-—

Thus the concepts of left limit and right limit can be used in many cases to
prove the nonexistence of limit.

Example 10
0ifx<0
lifx>0
Then lim f(x) = 1and lim f(x) = 0.

x—0+ x—0—

Let f: R = R be defined by f(x) = {

Example 11

Let f: R — R be defined by f(x) = [x] where [x] is the integral part of x.

Then for any integer n, lim f(x) does not exist, since lim+f(x) =nand
xX-n xX-n

lim f(x) =n—1.

X-n—

Differential and integral calculus



Exercise 3

2 .
1.Let f:[1,3] — R be defined by f(x) = {;Cx _4 2}; ; i 3; i :23 Show that

fQR+)=2and f(2-) =4.

IA
IA

1
X -
2

x if
2. Let f:[0,1] - R be defined by f(x) = { ' . Show that

1—x if

0
lax<1
2

f(0O+)=0andf(1-)=0.

1.3 Continuous Functions
Definition

A function f is said to be continuous at x = a if given € > 0, there
exists § > Osuchthat|x —a| <& = |f(x) — f(a)| <e.

If a function f is not continuous at a then f is said to be
discontinuous at a.

A function f is said to be continuous if it is continuous at every
point of its domain.

Note
1. f is continuous at x = a iff lim f(x) exists and is equal to f (a).
x—a

2. If a function f is defined on a closed interval [a, b], then at the
end point a we can only talk about the right limit of f(x) and similarly at
the end point b we can only talk about the left limit of f(x). Hence the
continuity of f at the end points a and b are defined by the conditions

f(@) = lim f(x)and f(b) = lim f(x).

Example 12
Let f: R = R be defined by f(x) = x + 3. Then f is continuous at every
pointa € R.
Solution
For, lim f(x) = lim(x +3) =a+ 3 = f(a).
x—-a x—-a

Example 13
Let f: R - R be defined by f(x) = kx. Then f is continuous at every point
a €R.

Differential and integral calculus



Solution
For, lim f(x) = lim kx = ka = f(a).
x—-a x—a

Example 14
Any polynomial function given by f(x) = ag + a;x + ax? + -+ + a,x™is
continuous at every point a € R. (refer example 6)

Example 15
Let f: R — R be defined by f(x) =sinx. Then by theorem 1.15, f is
continuous at every point a € R.

Example 16

Let f: R - R be defined by f(x) = |x|. Then f is continuous at every point
a €R.

Solution

For, lim f(x) = lim|x| = |a| = f(a).

Example 17
Let f: R - R be defined by f(x) = [x]. Then f is not continuous at each
integer n. For lim f(x) does not exist. (refer example 11).

x-=n

Exercise 4
1. Show that any constant function is continuous at every point.
2. Show that the identity function f:R — R defined by f(x) = x is
continuous at every point.
Remark

(i) If f and g are continuous at a then f + g is continuous at a.

(i) If f and g are continuous at a then f g is continuous at a.

(iii) If f and g are continuous at a and g(a) # 0 then (f/g) is
continuous at a.

(iv) If f is continuous at a then |f| is continuous at a.

(v) If f is continuous at a and g is continuous at f(a), then g o f is
continuous at a. (i.e.) Continuous function of a continuous function is
continuous.

Differential and integral calculus



Example 18
f(x) = xis continuous at every point. Hence % is continuous at every
point x # 0.

AIso% is not defined at x = 0.

1. .
X is not continuous at x = 0.

Example 19
f(x) = x? + 1is continuous at every point.
Alsox? +1 # Oforalla € R.

" (x2+1)

is continuous at every point.

Example 20

f(x) =tanxis continuous at all point except atx = (2n + 1)§,n eZ
For, f(x) =
Now, sin x and cos x are continuous at all points. Also cos x = 0 where x =
(2n+ 1)§,n €Z.

~ tan x is not continuous at these points.

sinx

cosx

At all other points tan x is continuous.

Example 21
f(x) = sin 2x is continuous at all points since, sin 2x = 2 sin x cos x which
is a product of continuous functions.

Example 22

Let f(x) =sinxand g(x) = i Then f is continuous at all points and g is

continuous at all points x # 0.

2 (feog) =f(g(x) = f(i) = sin (%) is continuous at all points x #
0.

Example 23
Let f(x) = sinx and g(x) = x2.
~ f and g are continuous at all points.

Differential and integral calculus



2 (gof®) =g(f(x)) = g(sinx) = sin?x.

Definition
If a function f is discontinuous at a, then ais called a point of
discontinuity for the function.

Note
If a is a point of discontinuity for a function then any one of the following
cases arise.
(i) lim f(x) exists but is not equal to f(a).
x—a
(i) lim f (x) does not exist.
x—a
(i.e.) (a) Either lim f(x) or lim f(x) does not exist.
x-a+ x—a—

or (b) lim+f(x) and lim_f(x) exist but are not equal.

DIFFERENTIATION

1.4 Differentiability

Definition

Let f be a function defined on an open interval I in R. Let x € I. We say

that f is differentiable at x if }lm(l) f(x%)_f(x) exists and is finite.

The value of the above limit is called the differential coefficient or
derivative of f with respect to x and it is denoted by f'(x) or% orj—z ory’

where y = f(x).

If lim flx+h)—f(x)
h—-0+ h

the right at x. The value of the above right limit is denoted by R f'(x) and
is called the right derivative of f at x.

Similarly the left derivative L f'(x) can be defined.

Note

1. fis differentiable at x iff f is left differentiable and right differentiable at x
andL f'(x) =R f'(x)

2. If f is differentiable at every point of an open interval I then we say that
f is differentiable on I.

3.If fis defined on [a, b], then f is said to be differentiable on [a, b], if it is
differentiable on (a, b), right differentiable at a and left differentiable at b.

exists and is finite, we say that f is differentiable from

12
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Theorem 1.20
If f is differentiable at x then f is continuous at x.
Proof

Since f is differentiable at x, we have }lirr(l) w

Now, f(x + h) — f(x) = [w] L
~lim[f(x +h) = f()] = lim [M] h

= lim 2T 10 B
h—0 h h—0

=f®x0=0.
~lim fCe+h) = f(x)

~ f is continuous at x.

exists and is finite.

Note: The converse of the above theorem is not true. (i.e.) A function f

which is continuous at x need not be differentiable at x.

Example 24

Consider f(x) = [x].
Solution

lim f(x) = lim|x| = 0 = f(0)
x—0 x—0

-~ fis continuous at x = 0.

_(x ifx>0
We note that f(x) = {—x if x <0
- Rfl(o) — llm f(0+hf)l_f(0)
lim fW-r(0)
h—0+ h
. (h—0 B
=im(5)  Gr>0

AlsoL £'(0) = lim o fW-r© f(0)
= 11m ( f;l_o) (~h<0)

h—-0
=-1
~Rf'(0)#Lf'(0)
~ f is not differentiable at x = 0.

Differential and integral calculus



Example 25
_ _(24x ifx=0
Con5|derf(x)—{2_x ifx<0

Solution

xlir&f(x) = }Cl_rg(Z +x)=2.
lim f(x) =1lim(2 —x) = 2.
x—0— x—0

~lim f(x) =2 = £(0).

-~ fis continuous at x = 0.

. f0+h)-f(0)
Now, R f'(0) = lim —————
f1(0) = lim P
— lim f(W-r(0)
h—0+ h
. 2+h-2
= lim =
h-0 h

Also, L f(0) = lim LS

1

~Rf'(0) #Lf'(0)

=~ f is not differentiable at x = 0.

1.5 Algebra of derivatives

Theorem 1.21

Let f(x) = u(x) + v(x). Let u(x) and v(x) be differentiable at x. Then
f(x) is also differentiable at x and (u + v)'(x) = u'(x) + v’ (x).

Proof

fx) =ux) +v(x)

fl(x) — }E}% f(x+h)—f(x)

h
— lim [u(x+h)+v(x+h)—[u(x)+v(x)]]
h—0 h
s u(x+h)—u(x) |, v(x+h)-v(x)
- }zlir(l) [ h h ]

= lim
h—0

=u'(x) +v'(x)

[u(x+h)—u(x)] + lim [v(x+h)—v(x)]
h h—0 h

Theorem 1.22
Let u(x) be differentiable atx and c € R. Then ¢ u(x) differentiable at x
and (cu)'(x) = cu'(x)

Differential and integral calculus



Proof
Let f(x) = c u(x).

() = Jim fEH =S @)
« f'(x) = lim P

= lim cu(x+h)— cu(x)
h-0 h
=cu'(x)

Theorem 1.23
Let f(x) = u(x)v(x). Let u(x) and v(x) are differentiable, then f(x) is
also differentiable and (uv)'(x) = u(x)v'(x) + v()u'(x).
Proof

' _ i SR -F(X)
fr) =lim=———=
u(x+h)v(x+h)—u(x)v(x)

= lim
h—0 h

= lim u(x+h)v(x+h)—ulx+h)v(x)+u(x+h)v(x)—-ulx)v(x)
h—-0 h

s v(x+h)—v(x) . u(x+h)—u(x)
= }llir(l) u(x + h) [—h ] + }llir(l) v(x) [—h ]

u()v' (x) + v(x)u'(x).

Note

The above result can be extended to a product of n functions which are
differentiable, as follows.

(U, Ugy ooy Up)| = UTU o Uy + U UG U3 e Uy + oo+ UgUy Uy

This result can be proved by induction.

Theorem 1.24
Let f(x) = LGP, u(x) and v(x) are differentiable and v(x) # 0, then f

v(x)’
- . u ! _ veou' (0)-u@)v' (x)
is differentiable and (V) (x) = e
Proof
’ _ i SOHR)—F(X)
f10) = lim —=————=
_ qin LJuG+h)  ulx)
- Ll_r}’(l) h [V(x+h) v(x)
T l v()ulx+h)-v(x+h)u(x)
- }ll_rg h [ v(x+h)v(x)
= lim l [v(x)u(x+h)—v(x)u(x)+u(x)v(x)—v(x+h)u(x)
- h-0h v(x+h)v(x)

Differential and integral calculus



v(x) (M) —u(x) (M)]

m o
h—0 v(x+h)v(x) h h
_ veu @-u)r' @)

- [ ()12

Using the algebra of derivatives we can derive the derivative of any
differentiable function.

1.6 Derivative of Standard functions

Derivatives of some standard functions without proof

Result 1: Let f(x) = ¢ be a constant function. Then Z—; =0.

da

Result 2:
dx

(sinx) = cos x.
Result 3: :—x (ocsx) = —sinx.
Result 4: * (x™) = nx™ 1,

d X\ — X
dx(e ) =e”*.
d

dx
da

dx
da

dx
da

dx
Result 10:

Result 5:

Result 6: — (logx) = %

Result 7:

(tanx) = sec?xifx # 2n + 1)%.

Result 8:

(secx) =secxtanxifx # 2n + 1)%.

Result 9: — (cosec x) = — cosec x cot x if x # nit.
d

dx

(cotx) = — cosec? x if x # nm.

Hyperbolic functions

The hyperbolic functions are defined by

sinhx = %(ex —e™)

coshx = %(ex +e™)

The other hyperbolic functions tanh x, cosech x,sech x and coth x are
defined in terms of sinhx and coshx as in the case of circular
trigonometric functions.

Results

1.cosh? x — sinh? x = 1.

2.sinh 2x = 2 sinh x cosh x.

3. cosh? x + sinh? x = cosh 2x.

4.1 — tanh? x = sech? x.

Differential and integral calculus



5.1 — coth? x = — cosech? x.

Result 11: :—x (sinh x) = cosh x.
Result 12: :—x (cosh x) = sinh x.

Result 13: :—x (tanh x) = sech? x

Result 14: ;—x (sechx) = —sechxtanh x
Result 15: ;—x (cosech x) = — cosech x coth x
Result 16: :—x (cothx) = — cosech? x

1.7 The chain rule for differentiation

Theorem 1.25

Let f:[a,b] - [c,d] and g:[c,d] - [e, f] be two continuous functions.
Suppose f is differentiable at x € (a,b) and g is differentiable at y =
f(x) € (c,d), then gof is differentiable at x and (gof)'(x) =
g (f)f .

Proof

(g°f)(x+h})1—(g°f)(X) exists and is equal to

We have to prove that }lirr(l)

g'(fO)f' ().

Now, (goNGeth)—(goNx) _ [(gof)(xm)—(gof)(x) [f(x+h)—f(x)]
h fx+h)—f(x) h

Letf(x+h) =y +kand f(x) =y.

Since f is continuous, k —» 0as h — 0.

Now, @G+ -@NE _ [g(y+k>—g(y)] [f(x+h)—f(X)]

! k h

h
Taking limitas h —» 0(k — 0) and using the fact that f is differentiable at x

and g is differentiable at £ (x) we get (g © £)'(x) = g'(f(x))f' (x).

Example 26

Find the derivatives of the following functions w.r. t. x.

1. sin 2x 2.sin? x 3.sin x?

4.sinx 5+/sinx 6. ’(sin Vx)

7. sin(sin x) 8. sin(sin \/E) 9.sin(log x)
10.log(sinx)  11.es"¥ 12.sine* 13.sin x°
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Solution
1.Lety = sin2x
Let f(x) = 2x and g(x) = sinx.

% =g'(f(x))f'(x) = (cos 2x)2 = 2 cos 2x.
2. lety = sin? x.

d . .
d—y = 2sinx cosx = sin 2x.
X

.Lety = sin(x?)

« 2 = cos(x?) 2x = 2x cos(x?)

4.lety = sinvx
LAy R
Tax T cos\/}(zﬁ) - zﬁcosﬁ

.Lety = /(sinx)

Lay 1 cosx

Tax T 2y(sinx) cosx = 2,/(sinx)’
.Lety = [(sinvx)

dy 1 1
&= = ——cosVx(—=).
dx 2 (Sln\/;) (2\/;)
7.Lety = sin(sinx)

d .
~ 2 = cos(sin x) cos x.
dx

.Lety = sin(sinvx)
% = cos(sinvx) cosvVx (ﬁ)
9. Let y = sin(logx)

w

(9]

<))

(<]

dy 1 cos(log x)
~—==cos(logx)- =——==,
= (logx) -

10. Let y = log(sin x)

X

d 1
_y=( )cosx=c0tx.
dx sinx

11.Lety = ¢5in¥

d .
WX = esinx cog .,
dx
12.Lety = sine*
d
~ 2 = cose* (e¥) = e* cose”.
dx
. . X
13.Lety = sinx® = sin (—)
180

dy X T
S—=COS\—|\—
dx 180 180
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= (%) cos x°
Note
A function f(x) is called an odd function if f(x) = —f(x) and
f(x)is called an even function if f(—x) = f(x). We can prove that the
derivative of an even function is an odd function and the derivative of an
odd function is an even function.

1.8 Differentiation of inverse function

Theorem 1.26

Let f be a continuous one-one function defined on an interval and let f be
differentiable atx and f'(x) # 0. Let g be the inverse of the function f.

Then g is differentiable at £ (x) and g'(f (x)) = -

1"
Proof
Let f(x) = y. (M
= By the definition of inverse function g(y) = x 2)

Let y + k be any point in the domain of g.
Since f'is 1-1 there exists a unique point say, x + h different from x such
that

fx+h)=y+k a)
.~.g(y+k)=x+h (4)
L 9+)-g(y) . (x+h)-x
h 4 T feth)—-f(x) (by1,2,3,4)
1
= e )
h

Since f and g are continuous, as k — 0, we have h - 0. Now, taking limit

as h — 0in (5) and using the fact that f'(x) # Owe get g'(y) = f,tx)

1

g,(f(x)) = fl(x) .

Result 17
1

V1-x2

;—x(sin‘lx) = forallx € (1,—1).
Proof
. . 1 1
sinx is a 1-1 map from [_E”’E”] onto [—1,1].
~ sin"! x is defined on [—1, 1].
By the definition of inverse function y = sin™! x © x = siny.
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Letx € (1,—1).Hencey € (—%n,%n)

Nowdi(sin‘1 xX) = 7—
X d—y(smy)

1
cosy

_ 1
+,/(1-sin?y)

1 . 1 1
= o ( cosy >0in (—yr,;n))
Similarly we can derive the following results.
Result 18:(7;1—)C(cos‘1 x)=— forallx € (—1,1)

1
V1i-x2

. 4 -1, = _1t
Result 19: dx(tan x) 0

Result 20: = (cot ™ x) = —
dx

Result 21:(7;1—)C(sec‘1 x) = = forallx € (—o0,—1) U (1, ).

Ry

Result 22:;—36(cosec‘1 x)=— forall x € (—o0,—1) U (1, ).

| IJ( 2-1)
il = L
Result 23: ™ (sinh™ x) m forallx € R.
‘1L -1 = 1 —
Result 24: ™ (cosh™ x) Nean) forallx € (—1,1).

Result 25: - (tanh™! x) = ——
dx 1-x

Result 26:;—x (sech™x) = forallx € (—=1,0) U (0,1).

1
x+/(1-x2)

Result 27: :—x (cosech™'x) = forallx € R — {0}.

II\/(2 1)

Example 27

Find the derivatives of the following w.r.t x.

1.sin"1(2x) 2.sin™(Vx) 3. (sin"1x)?
4. sin"1(x?) 5.4/ (sin"1x) 6.sin™! %

20
Differential and integral calculus



7.sin"(e*) 8.sin"1(log x) 9.sin"!(sinh™! x)

Solution
1.Lety = sin"1(2x)

PR
Cax T J1-(2x)? - J(a-4x2) "
2.Lety = sin™*(Vx)

Sy _ 1 (L) -
Tax T J1—(2o)? \2vr/ | 2/(—x2)
3.Lety = (sin™!x)?

-1

. dy _ 2sin"'x
Tdx T J@-x2)

4. lety = sin_l(xz)

= e (20) =
~ - ( %2 J(l x‘*)
5.Lety = ,/ (sin~1x)

A
" dx 2‘/(sm 1y \/(1 x2
6.Lety =sin~ Ii

am R s
C @t Y e
7.lety = sin_l(ex)

.dy

X\ —
e (ex)2 e e = \/(1 82")
8. Lety = sin"1(log x)

B (l)

“dx ~ J1-(ogx)?] \x

9.lety = sin~*(sinh™! x)
dy _ 1 1

“ax T J1-(sinh-1x)2] J(1+x2)

Example 28
If y = 25" prove that (1 — x2)y? = a%y?.
Solution
y = e? sin"1x
y, = (easin_lx) a

V(a-x%)
yiJ(L—x?) = a e ¥ = ay.

w (1=x®)yf = a’y

Differential and integral calculus
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1.9 Differentiation of transformations

Sometimes a function can be simplified by suitable substitution
and hence the differentiation becomes easier.
Example 29

Differentiate sin™* ( 22
1+x

) w.r.t x.

Solution
— oin-1 (2%
Lety = sin (1+x2)
Putx =tan@
.. —1( 2tané
Then y =smn (1+tan2 0)
= sin~!(sin 26)
=20
=2tan"'x

Lay 2
Tdx T 142

Example 30
_ —_1( 2x -1 3x—x3) _ -1 4x—4x3 ) dy _ 1
y = tan (1—x2) + tan ( 5.2) —@an (— show that = = —

1- 1-6x2+x* 1+x2

Solution
Putx =tan@

Then, tan™* (12" ) = tan~1(tan 20) = 26.

—x2
— 3x—x
tan 1( -
1-3x

3

) = tan"!(tan 39) = 36.

(et Y }
tan (1_6xz+x4) = tan"'(tan 460) = 46.
~y=20+30—-46 =6.

=tan lx.
Ldy 1
Tdx T 14x2

1.10 Logarithmic differentiation

When a function is a product of a number of factors it is
convenient to take logarithm before differentiation. Also when a function
is of the form u” where u and v are both functions of x it is necessary to
take logarithm and then differentiate. This process is known as logarithmic
differentiation.

22
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Example 31

Find the derivative of u¥ where u and v are functions of x.

Solution
Lety = u".
~logy = vlogu.

Differentiating w.r. t. x we getid—y =-——* lo gu—
y dx vd

.d_y= v[ﬁ ’ ’ ]
LT u uu+vlogu.

Example 32
Findy'ify = x

sinx

Solution

logy = sinx log x.
Ll ( )

v sinx + log x cos x.
Ly ySinx [smx

e + log x cosx]

Example 33

1
Find y'ify = x* + xx.
Solution

1

Lety = u+vwhereu = x* and v = xx.
LAy _du  dv
Tdx T dx o odx’
Now, u = x*.

~logu = xlogx.

1du 1
Lm—= x(—) + log x.
Z—u = x*(1 + logx).
Alsov = xE.

~logv = (%) log x.
22 () (<),

dv 1 (l—logx)
So— = Xx
dx x2

. a
K

= xx(1+ logx) + xx (1 logx)

x2

Differential and integral calculus
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Example 34
Ify = x** prove 2 = yx* (3+10 x + lo Zx)

y prove > = yx* (- +log g’ x).
Solution
Lety = x*".
~logy = x*logx (M
~ log(logy) = xlogx + log(log x).

1 1dy

X 1 1
=—===+logx + (—)
logy y dx x logx \x

e ylogy(1+logx+ S )

dx xlogx

=yxxlogx(1+logx+ = ) (by (1))

xlogx

= yx* (i + log x + log? x).

Example 35

If xPy? = (x + y)P*9 prove that xZ—i’ =y.
Solution

xPy? = (x +y)Pra.

~plogx +qlogy = (p + q)log(x + y).
Differentiating w. r. t. x. we get

P a(avy _ (rta dy

x + y (dx) (x+y) (1 T dx)'

. (2 — M) _pta_vp

“ dx

. ay [ax+qy—-py—-qv] _ px+qx—px-py
" E[ y(x+y) ] - x(x+y)
B (e o)
Tax T \x/ lax+qy-py-qy x/ Llgx—pyl’
_y
X
dy
PR A

1.11 Parametric Differentiation

Differentiation of functions represented in terms of a parameter
Letx = f(t) and y = g(t) where t is a parameter.

Then by chain rule.

dy _dydt _d(g®) . d(f(®)
dx  dt dx at = dt

24
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Example 36
Findy'ifx = acos®t,y = asin®t.
Solution

d .
dy _ zlasin®t)
= =de -
dx £ 3

dt(a cos3t)
3asin® tcost
—3acos?tsint

—tant.

Example 37
If x = a(f + sinf) and y = a(1 — cos §) prove that y’ = tan (9).

2
Solution
d_y . d%g[a(l—cos )]

dx 4 i )
X de[a(9+sm )]

_ asin® 2 sin(g) cos(g)
T a(l+cos®) 5 cosz(g)

~ tan(9).

1.12 Differentiation of a function with respect to another function

Lety = f(x) and z = g(x) be two functions both of which have
derivatives. To find the differential coefficient of f w.r.t g. We treat x as a
parameter and we have

a _ar _ (&)

@
Example 38

Differentiate e* w.r. t. log x.
Solution

Lety = e* and z = log x.
Ly _ 4

“ dz - i(logx)

[y
Q
.|’<><

Il
R xin
®

25
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Example 39

Find the derivative of x5"* w.r. t. (sin x)*.
Solution

Let f = x5"* and g = (sinx)*.

af
.ﬂ_<d__x>
2o (&),
9 \ax

Now, log f = sinx log x.

sinx

l(ﬂ) =— cos x log x.

f \dx
d i sinx

w4 = ysinx [— + cosxlogx].
dx x

Now, g = (sin x)~*.
~logg = xlogsin x.

1d .
~ =% = ycotx + logsinx.

gdx
. ag _ . x .
L= (sin x)*[x cot x + log sin x].
caf _ xSinx [sinx+xcosxlogx
” dg - (sin x)¥ Lx(x cot x+logsinx)]"

1.13 Differentiation of implicit functions

So far we have considered differentiation of functions in which
the dependent variable y is expressed explicitly in terms of the
independent variable x. In this section we shall consider functions of two
variables x and y given by f(x,y) = 0. We differentiate the function itself

and find & .
dx

Example 40
Findy' if x3 + y3 = 3 axy.
Solution
x3+y3 =3axy.
Differentiating both sides w. r. t. x. We get
3x% + 3y?y’ =3a(xy’ +y).
~y'(3y? — 3ax) = 3ay — 3x2.

; _ ay—x?

=

—ax

26
Differential and integral calculus



Example 41
- dy log x

Y = X~V dy _ _logx
If x = e*™¥ prove that —~ g2
Solution
x¥ =e*77,
~ylogx =x—y.
~y(1+logx) = x.

X

oo y =
L dy (1+10gx)—x(%)
“dx T (1+logx)2

logx
~ (1+logx)2 °

1+logx

Example 42

Find y' ify = (sinx)”.

Solution

y = (sinx)”.

~ logy = ylogsinx.

5 (@) =y (G) + Cogsinx) (),
. dy __ y*cotx

“dx ~ 1-ylogsinx

Example 43
dy _ y(y—-xlogy)
Y = X &y _ yymxlogy)
If x y* prove that = xylogm "
Solution
x¥ =y*.

~ylogx = xlogy.
Differentiating w. r. t. x on both sides we get

%+ logx(z—z) = %(Z—z) +logy.

%(logx — i) =logy — (%)
. dy _ y(xlogy-y)

Tdx T x(ylogx—x)
_ y(y-xlogy)

T x(x—-ylogx)

27
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1.14 Higher derivatives

Let y = f(x) be a function which is differentiable over an interval

l. Then its derivative y, is also a function x.

If y; is differentiable w. r. t. x then its derivative is called the

2
second derivative of y w. r. t. x and is denoted by 3732/ ory®@ory,.

Generally if we can successively differentiate the functiony = f(x) w. r. t.

x n times, then the result is denoted byd—y
the n'" derivative of y w.r.t. x

Example 44

If y = x? sin ax find y; and y,.

Solution

y = x?sin ax.

~y; = x%(acos ax) + 2x sin ax.
= ax? cos ax + 2x sin ax.

&y, = ax?(—asinax) + 2 ax cos ax + 2x(a cos ax) + 2 sin ax.

= (2 — a*x?)sinax + 4 ax cos ax.

Example 45

If y = e cosx prove thaty, + 4y = 0.

Solution

y=e*cosx

Ly, =—e¥cosx+ e ¥ (—sinx) = —e¥(cosx + sinx)
&y, = —[e7*(—sinx + cosx) — (cos x + sinx)e™]

= —e¥(—2sinx) = 2e *sinx
~ys =2[e ¥ cosx — e *sinx] = 2e *(cos x — sinx)
~y, = 2[—e (cosx —sinx) + e *(—sinx — cos x)]

= —2e *(2cosx) = —4e ¥ cosx = —4y
“Y,+4y=0.
Example 46
Ify = """ % prove (1 — x2)y, — xy; — a%y = 0.
Solution
y = e? sin_lx‘

& () d it is called
— ory™ory, and it is calle

Differential and integral calculus
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in—1
aea sin X

oo yl = —m .
A-x)y, =ay.
~(A=x*)yf =a*y>
Now, differentiating again w. r. t. x, we get
(1—x) 2y,y, — 2xyf = 2a* y y,.
~ (1 =x%)y; —xy; —a’y = 0.

Example 47

m
Ify = [x +J(1+ xz)] , prove that (1 — x?)y, + xy; —m?y = 0.

Solution

y=[x+Ja+a]"
_m[x+\/m] <1+2m>
=[x+ A (R ")
= m x| (LD
T =[x+ TF0] "

(1 +x?) yf =mPy?.

Now, we differentiating again w. r. t. x we get
(1+x2)2y,y, + 2xyf = 2m?yy;.

&1 =xDy, +xy; —m?y =0.

Exercise 5

1.Ify =log (“Sﬂ) prove that— = secx.

2. Prove that the function y = x e* satisfies the equation xy' = (1 — x)y.
3. Differentiate the following functions w.r. t. x.
(i) e@sinbx (ii) ci+ea (iii) sin™ x cos™ x
(iv) log(log(logx))
4.1ff(x) =/ (1 +x)find f(3) + (x —3)f'(3).
5.f f(x) = tanx and g(x) = log(1 — x) find (f,ig;)
29
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1
6. Prove that the function y = e 7% satisfies the equation xy' =
(1 —x?)y.
_ ‘/(x2+1)—x) ay _ 2
7.1fy =log (—MH prove that el el

8. Differentiate the functions w.r. t. x.

(i) cot™1(log x) (ii) tan‘l(

-1 gi—g (iv) cot™1(sinh x)

Cody o \/(1+x2)—\/(1—x2)}
9. Find ™ if y = tan {mh/m

10. Differentiate the following w.r. t. x.
(i) sin™*(3x — 4x) (i) sin™! [Zx,/ (1- xz)]

1

_1 (1+cosx\2

(iii) tan™?! (—)
1-cosx

11. Differentiate (2x)* w.r. t. x.
12. Differentiate the functions w.r. t. x.
(i) 2% (i) e*” (iii) SN x (iv) x* + (cotx)*
1
Wa® e i (O
va
_ y2loga
T 1-logy

(1+x2)—1)

X

(iii) tan

13.1f y = a™ prove that Z—z
14.Find 2 if
dx
(i) y = (sin x)°°S* + (cos x)sn*
(i) y = (sin x)¥"% + (tan x)si"*
(i) y = x* + a* (iv)y = x' Y + (sin x)°s*

y[-xy*t¥logy+x1t¥(1+y)]
[y x1tXxlog x+ y1tX(14x)]"

15.1f x** + y1** = ¢ prove that% =

y dy y2logy
16 |f :xx rove—=> = —=- °2
Y P dx  x(1-ylogxlogy)?
dy y2tanx
17.1fy = (cosx)Y prove — = —————
Y ( ) P dx 1-ylogcosx
18.Find y’ for (sinx)°s¥ = (cos y)S"*.
2
y

dy
— 4V ay _
19. Ify = X7 prove that x ax 1ylogx"

_ . dy _ cosx
20.y = ,/(sinx + y) prove that = 2y 1

y2 cotx

. ay
= y e
21.If y = (sinx)¥ prove that dx  1oylogsinx

30
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Yy
22.1f (a + bx)ex = x prove that x3y, = (xy, — y)?.
23.1fy = x%e%*, prove that y, = e**(a?x3 + 6ax? + 6x)
24.If y = (sin™! x)? prove that (1 — x?)y, — xy, + 2.

25.1fy = acos(log x) + b sin(log x) prove that x?y, + xy! +y = 0.

26.Ify = tan(m tan™! x) prove that (1 + x?)y; = m(1 + y?).
2logx-3
x3

28.If y = (tan™ x)? prove (1 + x%)%y, + 2x(1 + x?)y, = 2.
Answers

3.(i) ab e@sinbx (i)

27.Ify = 10% prove that y, =

ex/a_e—x/a

1

(i) sin™ 1 x cos™ ' x (mcos? x — nsin?x) (V) ——————
log(log x)xlogx

4543 5 —1.
4 4
. 1 . 1 .
8. (I) — x(lTogzx) (II) m (III) m (IV) -sechx
9 X
CJ1-xt
N 3 2 1
10. (I)W (ii) — ("')_5
11. (2x)*[1 + log 2x]
12.(i) 2x log 2 (ii) e** log ex” [1+ logx]
. _1_[sin7tx | logx
(iii) x sin x[ +m

(iv) x*[1 + log x] + (cotx)*[log cotx — 2x cosec x]
(V) x\/}_% —[1 + logx] (vi) a*’ [2x loga]

1
i - (3)* () [1 +108 (5]
14.(i) (sin x)€°$*[cos x cot x — sin x log sin x]
+(cos x)%"*[cos x log(cos x) — sin x tan x]
(i) (sinx)®"*[1 + sec? x log(sin x)]
+(tan x)$"*[sec x + cos x log x log(tan x)]

(iii) x*[1 + log x] + a* loga
(IV) % [tan y+x c(it_J;c;stzc y);;;r;x log sin x]

[cos x log cos y—cosy cot x]

sinx tan y—siny logsin x
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1.15 nt" Derivative and Leibnitz theorem

1.15.1 n'" Derivative of some standard functions

Theorem 1.27

;—1; (ax +b)"=m(m—-1)(m—-2)..(m+n—1a"(ax + b)™ ™"
Proof

Lety = ax + b.

~y; =m(ax + b)™ a = am(ax + b)™ L.

vy, = m(m — 1)a?(ax + b)™ 2

Vp=mm—-—1)(m—-2)..(m+n—-1a"(ax + b)™ ™.

Theorem 1.28

a n— gt

ey (ax + b) nla™.

Proof

Put m = nin Theorem 1.27 to get the result.

Theorem 1.29
ﬂ( 1 ) _ (=D)"nla™
dx™ \ax+b/) ~ (ax+b)"*+1

Proof
Put m = —1 in Theorem 1.27 to get the result.

Theorem 1.30

dan _ (D" (n-1)la"
oy [log(ax + b)] = @

Proof
Lety = log(ax + b)

sy, =alax + b)™L.

_ ()" (n-1)la"
From Theorem 1.29 we get y,, = et

Theorem 1.31

dn
— (e¥) = qme®™,

Proof
Lety = e®.

Differential and integral calculus
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yp=ae
Y, = azeax
Vo = ale*

Theorem 1.32
;X—T; [sin(ax + b)] = a™ sin (ax +b+ % (nn)).

Proof
Lety = sin(ax + b)

~y; = acos(ax + b) = asin (ax +b+ %n)

= a®cos (ax +b +%n) = a®sin (ax +b +%(2n))

<
N
|

Y, = a"sin (ax +b+ % (nn)).

Theorem 1.33
;x—r; [cos(ax + b)] = a™ cos (ax +b+ % (nn)).

Proof
Proof is similar to the Theorem 1.32

Theorem 1.34

n
;;—n [e® sin(bx + ¢)] = r"e™ sin(bx + ¢ + nf) where

r =+va? +b%Zand 8 = tan"(b/a).

Proof

Lety = e sin(bx + ¢).

~y, =aesin(bx +¢) + be* cos(bx + ¢)

Puta =rcosfand b = rsinf.

~r=+va?+b%and 6 = tan"'(b/a).

Also y; = r e®[sin(bx + ¢) cos 6 + cos(bx + ¢) sin 9]
=re%¥sin(bx +c+0)

Similarly y, = r2e®* sin(bx + ¢ + 26)

Differential and integral calculus
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Vv, = r*e® sin(bx + ¢ + no).
Yo = [VaZ + b2 |n sin[bx + ¢ + ntan"1(b/a)].

Theorem 1.35

dx—r; [e%* cos(bx + ¢)] = r"e** cos[bx + ¢ + ntan~*(b/a)] where r =

Va? + b2and 8 = tan"1(b/a).
Proof
Proof is similar to that of Theorem 1.34

Example 48
. oo 3x%-1
Find y, ify = G0 D
Solution
3x%-1
y =

(x-1)2(2x+1)
Splitting into partial fractions we get

14 1 2 1 1 1
Y=y (E) ts ((x 1)2) ) ((2x+1))
14 [ ()" ] [( 1)”(n+1)'] 1 [( 1)"2"n']
L O G—Dn*2 | 9 [@xsnntt
Example 49
Find y, if y = sin 3x cos x.

Solution
y = sin 3x cos x.

= % (sin 4x + sin 2x).

S Yn = %[4" sin (4x + %nn) + 2™ sin (Zx + %nn) ]

Example 50
. . 3
Find y, if y = log 3x:2
Solution
y= =log(2x + 3) — log(3x + 2)

_ (D" (n-1)2" _ (- (n-1)13"

n Qx+3)" Bx+2)"

34
Differential and integral calculus



G A G PR

(2x+3)"  (3x+2)"

Exercise 6

Find the n'" differential coefficient of the following:

3x x?

1. m . m 3. COS2 X
4. sin® x 5. sin x sin 2x sin 3x 6.cos’ x sin® x
71og(4 — x?) 8.e% cos? bx 9.2 cos 4x
Answers
n
1.(=1)n! [(x—ll)"”'l + (2x+21)"+1]
2. DM+ DO+ 2)(x - D) 430+ Dx - D2 4+

A4(x—1)™ 1 —4(x —2)1?

3.2" 1 cos (Zx + %nn)

4.%sin (x + %nn) - %sin (3x + %nn)

5. % [2" sin (Zx + %nn) + 4™ sin (4x + %nn) — 6" sin (6x + %nn)]

[10" sin(10x+%nn)—4(8n) sin(8x+%n7r)+14-(2n) sin(2x+%nn)]

2—9
7.0 = D (=D 12 + %" = (2 — )]
8.2 [a"e‘“‘ + (a® + 4b2)§ e cos 2bx + ntan™?! (2)]
2 a
9.4/20 e?* cos(4x + ntan~12)

1.15.2 Leibnitz’s Theorem
We now prove Leibnitz's Theorem on nth differential coefficient
of the product of two functions.

Theorem 1.36 (Leibnitz’s Theorem)

If u and v are functions of x possessing derivatives of n™" order,
then
(w)y, = uv, + nCuyvy_q + nCouyvy_y + -+ + nC UV, + -+ + nC U, v
Proof

We prove this theorem by induction on n.
We note that (uv), = % (uv) =uvy + uyv.
Thus the theorem is true forn = 1.

35
Differential and integral calculus



Now, let us assume that the theorem is true forn = m.
& (V) = uvy FmCu vy g + o+ MG U Vi1
+mCu, vy, + - + mCpup, v
Differentiating both sides with respect to x we get,
(UV) g1 = Wipr + UV + MC UV + UpUppq] + -+ +
MGy [Ur_1Vm—riz + UV ri1] + MC [V +
Ups1Vm—r] + o+ MCp[Um vy + U1 V]
= UVpiq + UV + MC UV, + MO ULV, g + -
+mCr—1ur—1vm—r+2 + mCr—lurvm—r+1 + mCrurvm—r+1
+ mCUy 1 Vpy—y + -+ MCp Uy, V1 + MGy Uy 1V
= UVppq + (1 + mCuy vy, + [mCy + mCyluyvpy_q + -
+[mCpr_1 + mCJuyvpy—yyq + -+ + MCpypiq V.
Now we can use these equations mC,, = 1,mCy, = 1 and mC, + mC,_, =
(m + 1)C, and reduce the above equation is
WUV)y1 = UWpyr + (M + DCugvy, + (M + DCUp Vg + -
+m+ DCU Vg + o+ M+ 1) CppqUpgrV
~ The theorem is true forn = m + 1.
Hence the theorem is true for alln € N.

Example 51

Ify = x2e® find y,,.

Solution

Lety = uv whereu = x? and v = e%*,

-~ By Leibnitz's theorem

Y = x2(e™)n +nCy(x?)1(e™)py +
= x%(a"e%), + nC;(2x) (@™ 1e%) + nC,(2) (a™ 2e%)
= a" 2e™*[a?x? + 2anx + n(n — 1)].

Example 52

If y = acos(logx) + bsin(logx) prove that x?y, + xy; + y = 0. Hence
prove that x2y,,, + 2n + Dxy,. + (n? + Dy, = 0.

Solution

y = acos(logx) + b sin(log x).

Differentiating w.r.t. x we gety; = — asmiogx) +2 cosgogx)

~ xy, = —asin(logx) + b cos(log x).
Differentiating w. r. t. x again we get
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a cos(logx) b sin(log x)

Xy, +y; = " "

[a cos(log x) + b sin(log x)]

RIRRI=

2 x%y, +xy; +y =0

Using Leibnitz’s theorem for n* derivative we get

[?Vpi2 + NCL2X)Yn41 + nCo(2)Yn] + [XYnsr + nCiy,] + 3, = 0.
W xX2Ypin + Cnx + )y + [n(n—1) +n+ 1]y, = 0.

xzyn+2 + (Zn + 1)x3/n+1 + (nz + 1)yn =0.

Example 53

If y=(x+Vi+ xz)m prove that (1+x)y,4, + @20+ Dxy,,q +
(n? —m?)y, = 0.
Solution

y=(x+mm

-'-y1=m[x+ 1+x2m_1<1+ 2x )

2y/1+x2
LyV14+x? = m[x +V1+ x2|m
(14 x%) yi = m?y2
Now, we differentiating again w. r. t. x we get
(1 +x%)2y1y, + 2xy7 = 2m*yy;.
(1 =x¥)y, + xy; —m?y =0.
Differentiating n times using Leibnitz’'s theorem we get
[(1 + x*)Ynyz + nC(2X) + nCYn (D] + [xYn41 +1C1Yn] —m?y, = 0.
2+ X)) Ynsz + @+ Daxynyg + [n(n = 1) +n—m?]y, = 0.
(1 + xz)Yn+2 + (Zn + 1)xYn+1 + (nz - mZ)Yn =0.

Exercise 7
1. Find the nth derivative of the following:
(i) x3e%x (i) x™e* (iii) x% cos x (iv) x3a*
2. Ify = %57 % prove that (1 — x2)y, — xy, — a?y = 0. Hence prove

that (1 = x*)Ynsz — (20 + Daxyps — (0 + )y, = 0
3. If y=cos(logx) prove that (1—x2)x%y,,, +(2n+ Dxy,., +
(n?+ 1)y, = 0.
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4. Ify = (1 —x)%e* prove that y; (1 — x) + axy = 0. Hence deduce that
(1 = x)Yp41 — (0 + ax)y, —nay,_, = 0.
5.1fy = (x%2 — 1)" prove that (x%2 — 1)y, — 2xYp41 — n(n + 1)y, = 0.
Answers
1.() a"3e**[a®x? + 3na?x? + 3n(n — Dax + n(n — 1)(n — 2)]

(ii) e* [x" + "1—?x"‘1 ety "2("_1)2"'12]

2! n!

(iii) x? cos (x + %nn) + 2nm cos [x + % (n-— 1)7‘[]
+n(n — 1) cos [x + % (n+ 2)71].
(iv) a*(log @) ?[x2(log a)? + 2nxloga + n(n — 1)].

1.16 Partial Differentiation

In a real valued function of several variables we assign fixed
values to all but one of the variables and allow only that variable to vary,
then the function virtually becomes a function of one variable.
For example, consider the function z = f(x,y) = x? + 2x + y2. If we fix
the value 2 to y then z = f(x,2) = x? + 2x + 4 is a function of the single
variable x. If we differentiate this function with respect to x at x = 1. We
obtain the partial derivative of f(x,y) w.r.t. x at (1, 2).
We now give the normal definition of partial derivatives.
Definition

Let z=f(x,y) be a function of two variables. If

}lirr(l) [W] exists and is finite we say that the partial derivative

of f w. r. t. x at (xq,y,) exists and its value is given by the above limit. We

. 0z
denote this by 7 at (1, y1) or fi(x1,y1) or Dyf (x1,¥1) or Dy f(x1,y1).

Thus we have
9 _ lim [f(x1+h.y1)—f(x1,y1)
dx h—0 h
Similarly the partial derivative of f(x,y) w.r.t. y at (x;, y,) is defined as
9z _ lim [f(x1rY1+k)—f(x1rY1)
ay k—0 k
If it exists and is finite and it is also denoted by f, (x;, ;) or D, f (x1, y,) or

Dy f (%1, ¥1)-
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Note

If we have a function of n independent variables we can define as
above, the partial derivative w. r. t. any one of the variables.

If z = f(x,y) posses a partial derivative w. r. t. x at every point of

its domain, then we get a new function Z—; . This function is also a function

of x and y which may be differentiated w. r. t. either of the independent
variables, thus giving partial derivatives of higher order. We have

9 (0r\. @ (9f. 0 (3f). 0 (of -

5(5), % (ay)' % (ax)’ P (ay) which are also denoted by
a%r o*f @8*f  d%r

320 392’ ayox’ axdy Of faxs fyyi frys fyx respectively.
Thus we have four second order partial derivatives. The other
higher order partial derivatives can similarly be defined.

Example 54

If u=Ilog(tanx +tany +tanz), show that sin ZxZ—Z + sin ZyZ—; +
sin2z2% = 2.
0z

Solution
u = log(tanx + tany + tan z).

ou sec? x

" 9x ~ tanx+tan y+tanz

. ou 2tanx
LSsin2x —= —MM——
ax tanx+tany+tanz
. ou . ou . ou 2tanx+2tany+2tanz
~sin2x—+sin2y—+sin2z— = 4 = 2.
ox oy 0z tanx+tany+tanz

Example 55

If f =x3+y>+2° 4+ 3xyz find (i) £y (ii) frre (i) fryz
Solution

f=x3+vy3+2%+3xyz

o fr =3x%+3yz

S fex = %(3x2 + 3yz) = 6x

Sy = :_y (3x% + 3yz) = 3z

i foye = = (fuy) == (32) = 3
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Example 56

fu=fx—-yy
Solution
u=f(x—y,y—z,
PutX=y—z
PutY =z—x
PutZ=x-y

Now, u = f(X,Y,Z) where X,Y, Z are functions of x, y and z.

—27,Z—X) provethat—+ +—=

dz

zZ—X).

ox ox ox
n—=0=—=1,—= -1

ox ay 0z

ay ay ay
=, =00 =1

ox " ay az

0z 0z

dx " oy " 8z

. Ou _ 0udXx | dudy  0duodz
T ox  axox | avox | o9zox

ou ou
a ' oz
Similarly,
a_u _ du ou

Exercise 8

1. If u=x?yz+xy?z+xyz?> prove that x—+yzu+

dxyz(x +y + z).

[ using (1)]

2%q

2
2.1fp = q?r? prove that 6—127 X3z = 4p.

3.Ifu = e* prove that + u _ =u [(a_u)

5fu=ax+6y+

Answer
5.-14.

ay? ax

622

8zanda+5+£= 0 find a.

6]

4.1fu = log(x? + y? +zz) prove that—+—+

0.

T x24y2422°

au
62
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1.17 Euler’s Theorem
Homogeneous function and Euler’s theorem

For simplicity, definition and theorems in this section will be
given for functions of two variables only. Extension to functions of n
variables is immediate.

Definition

Consider  the  polynomial  f(x,y) = agx™ + a;x™" 1y +
ax™2y? + -+ a,y™. Here the degree of each term is n. We say that f is
a homogeneous function of degree n.

We now extend the notion of homogeneity to functions other
than polynomials.

A function f(x,y) is said to be homogeneous of degree n if
fQx,hy) = A*f(x,y) forall 1.

Example 57
f(x,y) = x® + y3 + 3x%yis a homogeneous function of degree 3.
Solution
For, f(Ax,Ay) = A3x3 + 23y3 + 312x2 1y
= 3(x3 + y3 + 3x%y)
= Pf(x,y).

Example 58

1
f(x,y) = (x? + 4y?) 3 is a homogeneous function of degree — 2

Example 59
f(x,y) = sin (zt—z) is a homogeneous function of degree 0.

Note f(x,y) = x? + x — y is not a homogeneous function.

Theorem 1.37 (Euler’s Theorem)
Let f(x,y) be a homogeneous function of degree n having first
order partial derivatives in a domain D of R?.

of of _
Then x£+y5 =n f(x,y) forall (x,y) € D.
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Proof
Since f(x, y) is a homogeneous function of degree n we have f(Ax,Ay) =

Af (%, ).
Differentiating both sides w. r. t A we have

x fr(x,Ay) +y f,(Ax, ly) = n A" (x, ).
Putting A = 1we havex f,.(x,y) + ¥ f,(x,y) = n f(x,y).
(i.e.) xz—£+ yZ—f} =nf(x,y).

Theorem 1.38 (Extension of Euler’s Theorem)
If f(x,y) is a homogeneous function of degree n then x%f,, +

2xy fxy + yzfyy = n(n - 1)f

Proof

By Euler's theorem we have x f; +y f, = nf (M
Differentiating (1) w. r. t. x and y we get

Xfox it nyx =nf; (2)
xfxy+fy+yfyy:nfy (3)

Multiplying (2) by x and (3) by y and adding we get
xzfxx + 2xy fxy + yzfyy + (x ft yfy) = n(x ft yfy)
xzfxx + ZX_'V fxy + yzfyy = n(n - 1)f [USing (1)]

Example 60

Verify Euler’s theorem for the function f = x3 — 2x%y + 3xy? + y3

Solution

Clearly f is a homogeneous function of degree 3.

fe = 3x% — 4xy + 3y

fy = —2x* + 6xy + 3y°.

~xfe +yfy = x(Bx% — 4xy + 3y?) + y(=2x* + 6xy + 3y?).
=3(x3 — 2x%y + 3xy? + y3)
= 3f.

Hence Euler’s Theorem is verified.

Example 61

=1 x+y _ 1
If u = sin (\/?+«/37) prove that xu, + yu, = Stanu.
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Solution

_ xty
Letv = N
Thenu = ¢~1(v) where v is a homogeneous function of degree%and
¢(u) = sinu.
A _1¢m) _ sinu _ tanu
- By Theorem 2, xu, + yu, = 20~ zesm = 2

Example 62
1 1 logx—logy af af

If f(x = =4+ —4+ ———=provex — —+2f=0

f( 'y) x2+xy xZ+y? P 6x+y6y+ f
Solution

1 1 logx—logy

Xy)=5+—+—7>7=

foy) =G+t =0
1 1 log Ax-log ly

~ fAx, dy) =

f(Ax, 4y) A2x2  Axdy = A2x2+AZyZ
1 + 1 + (log A+logx)—(log A+logy)
T A2x2  Axdy A2x2+22y2
1 [1 1 logx—logy]
T2z lxz T oxy x2+y2

Hence f(x,y) is a homogeneous function of degree —2.
: ' o L U _
-~ By Euler’s theorem x P + yay = —2f.

or

SX =
ox

+yZL+2r=0

Exercise 9

1. Verify Euler’s Theorem for the following functions.
(u=x3-2x%y+y3 (i) u = ax? + 2hxy + by?

—1 [VE—Vy
VXY

_ -1 x3+y3) ou ou _ .
3.Ifu =tan (—x+y prove that x—+ Y5, = Sin 2u.

2.Ifu =sin

u u
prove that x——+ Yoy = 0.

Hence or otherwise prove that
2 2%u 2%u 2 2%u

—_— —_—— - in? i
x? 224 2xy axay TV 552 (1 — 4sin” u) sin 2u.
_x 20%u %u | 2%
4.Ifu= 21y PTOVe that x*—— + 2xy oxoy +y oy 0.

Differential and integral calculus
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UNIT-lI
APPLICATION OF DIFFERENTIATION |

2.0 Introduction

In this chapter we shall discuss some important applications of
differentiation such as the geometrical applications - tangent, normal sub
tangent, subnormal, angle of intersection, radius of curvature, evolutes
and envelope of Cartesian and polar curves.

2.1 Tangent, Normal, Sub tangent, Subnormal
2.1.1 Tangent and Normal

Consider a function y = f(x) which is continuous in [a,b].
Suppose f(x) is differentiable at a point ¢ € (a,b). Let P be the point
(c,f(c)) which lies on the graph of f. Let Q(c + h,f(c +h)) be a
neighboring point. Draw PM and QN perpendicular to x-axis. From P
draw PR perpendicular to QN. Then we have PM = f(c) and QN =
f(c + h). Let the chord PQ intersect the x- axis atS making an angle 6
with the positive direction of the x-axis measured in the anticlockwise
direction. Let the tangent at P to the curve y = f(x) intersect the x-axis at
T making an angle ¢ with the positive direction of the x-axis measured in
the anticlockwise direction.

LY
qQ
PO g
w NG x
o|T s M N o

Now as the point Q approaches P along the graph, both QR and
PR tend to zero. Also the chord PQ in the limiting position tends to the
tangent at P and the angle 6 tends to angle ¢.
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f’(C) — llm [f(C+h)—f(C)]
QN -PM
h—>0

= jim [E]

= limtan 0 = tan ¢.
h—-0 ¢

Hence the derivative f'(c) represents the slope of the tangentto y = f(x)
at (c, £ ().

2.1.2 Equation of tangent and normal
Since the slope of the tangent at any point (x;, y;) on the curve
y = f(x)is f'(x;) we see that the Equation of the tangent to the curve at
(x4, v4) is given by
y=—y1=f"0)x —x)
Since the normal to the curve y=f(x) at (x,y,) is
perpendicular to the tangent to the curve at that point the slope of the

normal is given by - (f T )) provided f'(x;) # 0.

Hence the equation of normal to the curve at (x,, y,) is given by
- (x —x,)
v =(5 (xg)

2.1.3 Sub tangent, Subnormal, Length of Tangent, Normal, Sub
tangent and Subnormal
Definition
Let P(x,y) be any point on the curve y = f(x). Let the tangent
and the normal at P meet the x-axis at T and N respectively. Draw PM
perpendicular to the x-axis. PT and PN are the length of the tangent and
normal to the curve and TM and MN are the subtangent and subnormal
to the curve at the point P.
Let Y be the angle that the tangent makes with the x-axis.
Length of the tangent = PT = y cosecy
=y1+cot?y
_ y/antpi

- tany

y«[1+y’2

yI
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AY

Length of normal = PN = ysecy

=yJ1l+tan?y
=yJ1+y’?
Length of the subtangent = TM = y coty
__y _Y
~ tany '
Length of the subnormal = MN = ytany
=yy.

2.1.4 Polar Tangent, Normal, Sub-tangent, Sub-normal

Let P(r, 0) be a point on the polar curve whose equation isr =
f(6). Draw the tangent and the normal to the curve at P. Through the
pole O draw a perpendicular to the radius vector OP to meet the tangent
at T and the normal at N. Then OT is called the polar subtangent and ON
is called the polar subnormal to the curve r = f(8) at P. From the figure,

POT is a right-angled triangle.
oT

=~ With the usual notation tan ¢ = % =—

~ 0T =rtan¢ = r? (%)- ( tang =1 (%))
- Polar sub-tangent = r2 (g)-
@

Similarly, we can prove that polar sub-normal ON = ”

The polar tangent PT = OP sec ¢

=ryl+tan?¢

2
~ Polartangent = r fl +1r? (%)
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N r = 1(0)

Polar normal PN = OP cosec ¢

=ryl+cot?¢

)

a0
2
~ Polar Normal = /rz + (Z—;)

Example 1

Find the equation of the tangent to the parabola y? = 4ax at (x;, ;).
Solution

y? = 4ax.

Differentiating w. r. t. x we get 2yy’ = 4a.

= ()

- Slope of the tangent at (x;,y;) = (i—a)
1

Equation of the tangent at (x,, y,) is
y=yn= (i—j) (x = xp).
Y yy, —yE = 2ax — 2ax,.
S yy, = 2ax + y? — 2ax,.
= 2ax + 4ax, — 2ax, (= y? = 4axy)
¥y = 2a(x + xq).

Example 2
Find the equation of the normal to the curve x = a(6 —sinf),y =
a(l —cosB)atf =m/2.
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Solution
x =a(@ —sinf),y = a(l — cos ).
v _dy dx
dx ~ do ~ de
asin@

- a(l-cos )

= cot(6/2).
=~ Slope of the tangent at 8 = /2 is cot(/4) = 1.
=~ Slope of the normal at 8 = /2 is —1.

Also,at0 =m/2,x = a (g— 1) andy = a.
~ Equation of the normal at 8 = /2 is

T
y—a=(-1) [x—a(;—l)].

(i.e.)x+y=az—".

Example 3
Find the lengths of the tangent, normal, subtangent, subnormal to the
curve x = a(f —sin8); y =a(l —cosf)atf =m/2.

Solution

x =a(@ —sinf); y = a(l — cosH).
LY _dy  dx  asing (2)
“dx do " dd  a(l-cos6) cot 2)°

At0 =n/2,y'=1landy = a.

2
Length of the tangent = 7 S = V2a

Length of the normal = y,/1 + y'? =+2a
Length of the subtangent = )% =a.

Length of the subnormal = yy’ = a.

Example 4

Find the polar subtangent for cardioid » = a(1 — cos 6).
Solution

r =a(l — cos@).

Z—; = asin@.

de

Polar subtangent = 12 —.
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__a?(1-cos0)?

asinf
_ 4a sin‘*(g)

- 2 sin(g) cos(g)
= 2asin? (g) tan (g)

Exercise 1
1. Find the equation of the tangent to the following curves.

(i) y? = 4ax at (at?, 2at) (i)y = 2x? —4x + 5at (3,11)
2. Find the equation of the tangent and normal to the following curves at
the points indicated.

(i)\/}+\/§=5at(9,4) (i)x =sint;y = cos2tatt = /6
3. Find the length of the tangent, normal, subtangent, subnormal to the
following curves.

() y2(2a — x) = x? at(a,a) (ii) 6y% = x3 at (6, 6).
4. Find the lengths of the polar sub-tangent and the polar sub-normal to
the following curves.

(r@ =a (ii)r =a(1+ cosh) (iii)zr—az 1+ ecosB
Answers
1.()yt=x+at? (i)8x—y=13.
2.(i) 2x + 3y = 30; 3x — 2y = 19.
(i4x +2y=3;2x—4y+1=0.
3.0 V5020 (i) 2vT3;3VT3; 4;9.
4.()a; —= (ii) 2a cos? (g) cot (g); —asin6.

92
sy 2 2ae sin 6
(III) a . 2aesin

esinf@’ (1+e cos 6)?

2.2 Polar Curves

Let 0X, OY be the rectangular axes with origin at 0. With respect
to this system any point P in the plane can be specified by its Cartesian
coordinates (x,y). The point P can also be specified by the coordinates
(r,0) wherer = OP and 0 is the angle that the line OP makes with the
positive direction of the x-axis measured in the anti clockwise direction.
The numbers r and 8 are called the polar coordinates of the point P. Then
O is called the pole, the ray 0X is called the radius vector joining O and P.
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The relations between Cartesian and polar coordinates of a point
P are given by

x=rcos@;y=rsinfandr =,/x2+y2; § =tan " lx.

2.2.1 Angle between radius and vector and tangent

Let r = f(0) be the equation of a curve in polar coordinates.

Let P(r, 0) be a point on the curve.

Let ¢ be the angle between the radius vector OP and the tangent
to the curve at P.

Let ¢ be the angle made by the tangent at P with the initial line.

Now with respect to the Cartesian coordinates we have
x =rcosf = f(6)cosb (1)
y=rsinf = f(0) sin 6 2)
Equations (1) and (2) can be taken as the parametric equations of the
given curve with 8 as parameter.

We know that the slope of the tangent to the curve at P is
_dy _dy df _ sin6f'(6)+f(8)cosf
ang = =6 X cos 0f'(0)—f(0)sin 6

_ tan0+[f()/f' ()]

1-tan6[f(6)/f'(6)]

Butp =60 + ¢.
Hence tan ¢ = tan(6 + ¢).
tan 6+tan ¢
1-tan @ tan ¢

(4)
Comparing (3) and (4) we get

tan(pz%zr+(2—;)=rx(§).

2.2.2 The angle of intersection of two polar curves
At a point of intersection of the two given curves the radius
vector is the same.

- tan Q=

Let ¢, and ¢, respectively be the angles between the common
radius vector and the tangents to the curve.
Then |, — ¢, | is the angle of intersection of the curves.
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Note
1. If |y — sl =§then the two curves are said to intersect

orthogonally.
2. If |¢p; — ¢,| = 0then the two curves are said to touch each

other.

Example 5
Find the angle between the radius vector and the tangent to the curve r =

a(l —cosB)ato = %. Also find the slope of the tangent at 8 = g.
Solution
r =a(l — cos@).
dar .
g = asin 0.
0
dr  a(1-cos @) Zsinz(E)
~stang =r+—= = .
¢ ag asin® Zsin(g) cos(g)
6
= tan (E)
6 b4 b4
L —;.Henceate == we have ¢ =5
We know that ¢ = 6 + ¢.Hence ¢ =§+£=%.
T
=~ Slope = tan ¢ = tan (Z) =1.
Example 6
Find the angle of intersection of curves r = ——and r = ——.
1+cos 6 1-cos 6

Solution
Let P(r, 0) be the point of intersection of the two curves.
Let ¢, and ¢, be the angles which OP makes with two tangents at P.

¢ —lgsec? ( )
(1+cos6) 2 2)°

Taking logarithm and differentiating, we get
 (G8) = mrmlsec () ran () G)

= tan (9.
gy = () = on(8) = n 5 -2)
L=

We haver =

N R
N |
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- 0
Similarly for the curve r = we can prove ¢, = — 7

b

(1-cosB)
T

“ Py — ol = PR

Note Hence the two curves intersect orthogonally.

Example 7

Find the angle of intersection of the curves r = a6 and r6 = a.
Solution

Solving the two curves we have 82 = 1 or 8 = +1.

Hence the point of intersection of two curves are P(a, 1) and Q(—a, —1).

dr
For the curve r = a0 we have =

r ab
~ tan ¢ —5—7—0.
~AtP(a,1),tan¢; = 1and ¢; ==
Similarly for the curve r6 = a we can prove that tan ¢p, = —1 at P(a, 1).
31

Hence ¢, = e

~ The angle between the curvesiis |p; — ¢,| = E -5 = g

Hence at P(a, 1) the curves intersect orthogonally.

Similarly we can prove that the curves intersect orthogonally at Q(—a, —1)

also.

Exercise 2

1. Find the angle between the radius vector and the tangent for the

following curves.
()7 = a(1l — cosh) (ii)§=1+cos9
(i) ™ = b™(cosnb + sinnbh)
2. Find the angle of intersection of the following curves.
(()r=a(l +cos@);r =b(1—cosH)

(iil)r =asin26;r = acos 26
a

(iiy)r =alogf;r =

log6
Answers
N b4 6 e T
1'(')5 (||);—; (|||)Z+n0
2.00% (i tan* (%) (i) tan* (25)
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2.3 Pedal Equation of a curve ( p - r equation)

Length of the perpendicular from the pole to the tangent at P(r, 9)
Let p denote the length of the perpendicular OT drawn from O to

the tangent at P(r, 6). Let ¢ be the angle between the tangent at P and

the radius vector OP.

From triangle OTP, p = r sin ¢.

.1 _ cosec?p _ 1+cot?

Y r2 r2
_i,1 ( 1 )2
r2  r2\tan¢/ °

r= "

r. &)

0 >
i
P a0
T
1, 11 [fdr)?
=+ (5)
1 1, 1 (dr\?
o=t ()
Note If we putrzithen (Z—;) =—%(Z—Z) and the above equation
S|
becomes z=w |5 -
et ()
"pZ_u + 20)
Definition

The equation of a curve in terms of pand ris called the p - r
equation of the curve. (pedal equation)

Let the equation of the given curve be r = £(0) (1)
. 11, 1 far)?
For this curve we have e + = (E) (2)
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Eliminating 8 between (1) and (2) we get the pedal equation of the given
curve.

Example 8

Find the p — r equation of r = asin 6.

Solution

r = asin#f.

T
~—=acosé.
de
2
1 1, 1 (dr
We have = = = —(—)
p2  r2 +3 do
1,1 2
==ta (acosB)
1, a%cos?6
T2 r4
__a?sin? 0+a?cos? 0
- e
2

T

~atp? =

~ ap = r?is the required p — r equation.

Example 9
Find the p — r equation of the curve r? sin 20 + a? = 0.
Solution
r?sin26 + a? = 0.
~ 12 = —a? cosec 20
(M
Differentiating (1) with respect to 8 we get
er—; = 2a® cosec 26 cot 20

. dr _ a?cosec26 cot20
i .

2

1 1 dr
We have = 0 (—)
(a cosec? 20 cot? 29)

1
r4

(a* cosec 29)(cosec 20 —1)
[ (— —1)] (using (1))
+2 ()

Differential and integral calculus
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1
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r5
1
)
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~p?r? = a*orpr = a.

Example 10
Find the p — r equation of the curve r = %(1 —cos9)
Solution
r=§(1—c050) (1)
Differentiating (1) with respect to 8 we get Z—; = %sin 0
1 1 . 1 fdr\?

We haveﬁ = r_2+r_4(E)

1 1 (a? . o

_r2+r4(4- Sin 9)

_ 4r2+a?sin? 0

- 4r#

4(%2)(1—cos 0)%2+a? sin? 0

- 4r#

_ 4q? sin4(§)+4a2 sin? (g) cosz(g)

- 4r4

_ 4q? sinz(g)[sinz(g)+cosz(g)]

- 4r4

a? sinz(g)

= W (From (1 ))

__arsind(G)

- r3(g)><2 sinz(g) EEh
. 02 a
Example 11
Find the p — r equation of the conici =1+ecosf
Solution
% =1+ecosH (1)

_ 1
" 1+ecos8
. ﬂ _ lesin @
40 T (1+ecos)?
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2
1 1 1 [dr
We have = = = —(—)
p?z r2 T r* \do
1 1, 1[12%e?sin?0 ]
p2  r2 ' r4|(1+ecos@)*
1 1 [1%e?sin? 6 .
R e ] (Using (1))
1 _ 1, e?sin?@
2 r? 12

Now,1+ecost9=%=>ec059=£_1

= e%cos?0 = (i— 1)2
= e?(1 —sin?0) = (%— 1)2

2
. !
=>ezsm29=ez—(——1)

r

12

a1 (toq)
From(2)wegetp2—r2+ [e (r 1)]

1 1 ezrz—lz—r2+2lr]

22 )
_e?r?—rli2ir
- 1272
_eir-r+2l
12r
. p? = 1r
e?r—r2+21

This is the p — r equation of the conici =1+ ecos®.

Example 12
Find the p — r equation of the curve r = q e? ©°t®,
Solution
ar 6 cota
— = (cota)ae .
-5 = (cota)
2
11, 1 (dr
We have = = = —(—)
pz r2 + r4\do
1 1 (,2,20cota 2 2
—T—Z+T—4(a e )(cot? a)y?.
r2+a2 cot? a echota
= r4
2
_ r%+cot? a(a ef 0t®)
= o

_ r%+r2cot?a

r4
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__ cosec?a

r2
~p? =r?sina.
Hencep = rsina.

Exercise 3
Find the p — r equation of the following curves.
(i) 2a =r(1 —cosH)
(i) r? = a?sin 26
(iii) 72 cos 20 = a?
Answers

2 _ .2

() p? = ar (i)pa® =r 2

(ii)pr =a

2.4 Curvature
2.4.1 The length of an arc and its derivatives

Consider a curve given by the equation y = f(x). Let A be a fixed
point on the curve. Let P(x,y) be an arbitrary point on the curve. Lets
denote the arc length of P. Clearly s is a function of x.

1

-

We shall now prove that £ = [1 + (d—y) ]2.
dx dx

Let Q(x + Ax, y + Ay) be a neighbouring point on the curve. Let arc AQ =
s+ As.
From the right angled triangle PQR we get PQ? = PR? + RQ>.

= (Ax)* + (Ay)?
(3 &) =1+ @)

P hord P
Now as P — Q,—Q= (u
As arc PQ

—+

)—>1andAx—>0.

57
Differential and integral calculus



Ay
As Y

L (as\? _ dy\?
(&) =1+(2)
1
L9 _ a\?|?
"dx_[1+(dx) ] )
Note Let the tangent at P and the chord PQ make angle ¢ and 6
respectively with the x-axis. From the right angled triangle PQR we get

PR Ax Ax ( As
cosf=—=—= (—)(—)
PQ  PQ  \as/\PQ

A P
Now,asP — Q,0 —>¢and—s= (M) -1
PQ ChordP PQ

dx <. . . d
s cos¢ = = Similarly sin ¢p = d—i
S

. d d dx . dx
AIsosmqb:—y:(—y)(—): L andsing = =
ds dx ds 237 ds
(1+yf)

1

1
(1+y§)?

Definition

Consider a curve given by the equation y = f(x). suppose the
curve has a definite tangent at each point. Let A be a fixed point on the
curve and P be an arbitrary point on the curve. Let s denote the arc length

AP. Let ¢ be the angle made by the tangent with the x-axis. Then (%) is

called the curvature of the curve at P.

Thus the curvature is the rate of turning of the tangent w. r. t. the arc
length.

Theorem 2.1

The curvature of a circle of radius r at any point is % .
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Proof

Let A be a fixed point on the circle and P be any point on the circle. Let arc
AP = s. Let the tangent at P make an angle ¢ with the tangent at A. Then
LAOP = ¢.

~s=rd.
ds d 1
=% _ randhence2® =1
d¢o ds r

. . .1
Thus the curvature of a circle of radius r is -

Definition
The reciprocal of the curvature of a curve at any point is called the radius
of curvature at that point and it is denoted by p.

das
Hence we have p = e

Note For a circle of radius r, the radius of curvature at any point is equal to
T.

2.4.2 Formula for radius of curvature
1. Cartesian Form

We know that Z—z = tan ¢.

Differentiating w. r. t. s we get,
d?y\ (dx\ _ 2, (do

() (5) =sec 0 (%)

~ y, cos ¢ = sec? ¢ (%).
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3
. ds _sec*¢ _ (1+tan?¢)?

d¢ Y2 Y2

3
_ ()2
ya
Note If we start with the equation cot¢ = %and proceed as above we

arrive at the following alternative formula for the radius of curvature.
3

dx\212
_ @)1
&)
dy?
This alternative formula can be used to find p when Z—z becomes oo at the

given point.

2. Parametric Form
Letx = f(t) and y = g(t) be the parametric equations of the given curve.
N AYCA WO
Tax T (dt) (dx) NG (1)
ey _ Af ey _ 49
Where f'(t) = " and g'(t) = "

azy  g"f'-g's"
= (2)

ax? 7?2
Substituting (1) and (2) in the Cartesian form and simplifying we get

(45?)

3
2

3. Implicit Form
Let f(x,y) = 0 be the implicit form of the given curve. Differentiating

f(x,y) =0wegetf, +f,y' =0.

1

_W [fY(fxx + fyxy’) - fx(fxy + fyyy’)]‘
By (y" =~ a[fuh) ~ 2oy + £ Y]

Substituting (1) and (2) in the Cartesian form and simplifying we get,

Now, y"" =

3
p= (F2+17)?
fxxf;_zfxyfxfy‘*‘fyyfxz )

60
Differential and integral calculus



4. Polar Form

Let r = f(0) be the given curve in polar coordinates.

~x=rcosf and y =rsinf, may be regarded as the parametric
equations of the given curve the parameter being 6.

dx ar . d . dar .
= cosﬁﬁ—rsme andﬁ = sm95+rsm9
d?x d?r dr
w—=c0s0— —2sinf— —rcos O and
doz do? de
d?y

. d?r dr .
oz = 51n9m+ ZCOSQE—T‘SIHH
Substituting these values in the formula for p in parametric form and
simplifying we get

gz’

3
(r2+r12)5 dr
=——* wherer, = —andr, =
p r242r2-r1, 1 de 2

5.p—rForm
With the usual notations we prove the following.

G =r ) 1
i (5) =+ (5)
(i) singp = r%

(iv) cosp = %

Proof

Lety = f(x) and s be the arc length.
2 2

Then (Z—i) =1+ (Z—Z)

(i.e) dx? + dy? = ds? (1

Now, x = rcosf and y = rsin 6.

Taking the total differentials we get,

dx = —rsinf d6 + cos 8 dr

dy =rcosf df +sinf dr.

adx? +dy? =r?d0? + dr?

s ds? =r?d6? + dr? (using (1)) (2)
2 2
(%) =72 (g) + 1. Hence we get (i).

2 2
Also from (2), (Z—;) =r2+ (Z—;) . Hence we get (ii).
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Let ¢ be the angle between the tangent at P(r, 8) and the radius vector r.
Let Y be the angle which the tangent makes with the initial line. Let p be

the length of the perpendicular drawn from the origin to the tangent at P.

Thenwe havetang =1 + @

dae’
. 1 /dr
«cotg =2 (G7)

- ds _ | 5, (d4r\?
From(u)wegetﬁ— r +( )

=r 1+%(Z—;)2.

=ry1l+cot?¢

= r cosec @.
. ae
~sing =r—-. Hence we get (iii).

i ds_ |2 (40
From (|)weget,dr— r (dr) +1

= JtanZ @ + 1 = seco.

dr
S COS QP = E

2.4.3 Formula for radius of curvature in p — r coordinates
e

We have (i) singp =r o

(i) cos = %

(iii) p = rsin @.
d . d
Now from (iii) we getd—p = sin¢ + r cos (pd—‘p.
T T
de drd de d
=rZ4+rZI2 =222
ds ds dr ds ds
a6 d(p) d
=r({=+—)=r—(0 .
(ds+ds ds( +(p)
dp _ _ady
dr ~ " ds’
. das _rdr
Tap o ap’
. _rdr
ap= o
Example 13

Find the radius of curvature at x = %on the curve y = sin x.
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Solution

y = sinx.

~y; =cosxandy, = —sinx.
~Atx =g,y1 =0andy, = —1.

3 3
_ (1) _ (402

PR
Example 14
Find the radius of curvature at any point of the curvex = acos®6,y =
asin® 6.
Solution

We have x = acos38,y = asin3 4.
d d dae
dx dae dx
__ 3asin?fcosd
" —3acos?@sinb

d2y d de
w—=—(—tanf)—.
dx?  de ( ) dx
_ —sec?d
T —3acos?0sin@’
_ 1
" 3acos*fsing
3
1+y?)2 3 . .
L p = % = (1 + tan? 0)z (3a cos* B sin @ = 3a cos O sin H.
2
Example 15

Find the radius of curvature of the curve given by x3 — 2x%y + 3xy? —
4y3 4+ 5x% — 6xy + 7y? — 8y = 0.

Solution

Let f(x,y) = x® — 2x2%y + 3xy? — 4y3 4+ 5x% — 6xy + 7y* — 8y = 0.
o fr = 3x% —4xy + 3y? + 10x — 6y.

fy = —2x* + 6xy — 12y* — 6x + 14y — 8.

frx = 6x — 4y + 10.

fyy = 6x — 24y + 14.

foy = —4x + 6y —6.

At(0,0), f, = 0; f, = —8; fuy = 10; f,,, = 14 and f,,, = —6.
Substituting these values in the formula for p in implicit form we get
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3
_ (FE+f7)?
Faxfg=2Fxyfafy+fyyf?

3
_ (02+(-8)2)2
p= 10(-8)2-2(-6)(0)(—8)+14(0)2
3
_ (822 _ 4
T 10x64  5°

Example 16

Find the pedal equation of the curve x? + y? = 2 ax and deduce its radius

of curvature.
Solution

Obviously the given equation represents the equation of a circle. Put x =

rcos@,y =rsinf.
~ 1% =2arcoso.

~ r = 2a cos 8 which is the polar equation of the circle.

dar .
Now,— = —2asin@f.
de

2
1 1 1 far
We have—z = —2+—4(—) .
P r r* \dé
_ 1 , 4a®sin?9
r2 r4
__ r%+4a%sin? 0
= — .
__ 4a®cos? 0+4a?sin? 0
r4 ’

TP =

Differentiating (1) w.r. t. r we get ZpZ—p =

.ap _ r3

“dar T 2a%p”
dr (Zazp)
r— = .
dp r3
“\r2 2a

'.p:a_

<

Example 17

473

T 4q2°

(using (1))

Find the radius of curvature of the curve r = a#.

Differential and integral calculus
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Solution
For the poIar form the radius of curvature is

(r? +r1)2 dr d?r
= —————wherer; = —andr, = —.
p 17 ap 27 gp2

For the curve r = af we haver; = aandr, = 0.

r242r2-r1y

3 3
_ (a?62%+a?)z _ a®(62%+1)2
T a202+42a2  a2(82+2)

3
__a(6?2+1)2
T (2+2)

Example 18
Find the radius of curvature for the general conic.% =1+ecosb
Solution

We know that p — r equation of the curveé =1+ecosfis
2 _ lZT
T e2r—r+2l

(M
The radius of curvature is p = rg—;.
Differentiating (1) with respect to r we get

d_p 2 (ezr—r+21)—r(e2—1)

Zp dr ! (e2r-r+210)2

_ 213

T (e?r-r+212’

p

Ldr p(ezr—r+21)2

“ap 13
d_r _ rp(ezr—r+21)2
dp 3 '
r(e?r—r+21)°
ap = [1—3 X p.

[ r(e2r— T+21) ] — r+2[]2 (using (1))
- u
12

3
_ (ezrz—r2+21r)E
= —12 .
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Exercise 4
1. Find the curvature of the following curves at the indicated points.

() 2y = x — x% + x% at (1%) (i) xy = 12 at (3,4)
2. Find the radius of curvature of the following curves at the indicated
points.

)y ="E atx=1. (i)vx +y =1at(3,2)
(iii) x2 = 4ay at (0,0) (iviy = e*at(0,1)
3. Find the radius of curvature of the following

(i) x = alog(secO +tan@);y = sech

(ii) x = a(cost + tsint); y = a(sint — t cost)

(iilx =3t3;y=3t—t3att = 1.
4. Find the pedal equation of the curve r™ = a™ cos n6 and hence find p.
Answers

Lis M2 202 L G)2a  W2vZ
L0asec?d (at ()6 4TI

2.5 Evolutes
Centre and circle of curvature
Definition

Consider a point P on any given curve. Draw the normal to the
curve at P. Let C be the point on the normal to the curve at P such that
CP = p and C lies on the side towards which the curve is concave. Then C
is called the centre of curvature to the curve at P. The circle with centre C
and radius p is called the circle of the circle of curvature at P.
Coordinates of the centre of curvature

Lety = f(x) be the given curve. Let P(x,y) be any point on the
curve. Let C(a, B) be the centre and p the radius of curvature of the curve
at P. Let ¢ be the angle made by the tangent to the curve at P with the
positive direction of the x-axis. From the figure
a=0M =ON — MN = ON — 0P

=x—psiny

3
=x— (1+y§)2 Y1
- 1
a2
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Y
*
o T M N X
B=MC=MQ+QC
=y+pcosy
(1+y )2< 1 )
Y2 (1+y )2
v
- y2
~ Cis (x——(1+y12) y+1+y1)

Definition
The locus of the centre’s of curvature of a curve is called the
evolute of the curve.

Example 19
Prove that the y-coordinate of the centre of the curvature of the curve at
the point (c, ¢) is 2c.
Solution
xy = c? M
Differentiating (1) with respect to x we get
xy; +y=0
(2)
sy =—%

X

~ At (C! C)'yl = -
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Differentiating (2) with respect to x again we get

xy, + 2y; = 0.Hence y, = —Z—zl.

- At (C' C)I }’2 =- 2(;1) = %

The y-coordinate of the centre of curvature at (x, y) is
_ 1+y%

B=y+—-.

. _ 1+(-1)2? _

~At(c,c),B=c+ 2o = c+c=2c.

Example 20

Find the x coordinate of the centre of curvature of the curve x = at?,y =
2at.

Solution
_dy _dt _ 2a 1
N=w " T
1t _ 1
Y2 =T a0 T T 2as
The x-coordinate a of the centre of curvature of the curve is

a=x-201+y?.
Y2

e o — 42 L (943 L
. a=at tx( 2at)(1+t2)

= at? +2at? (1+ ) = 3at? + 2a.
t

Example 21

Find the centre of curvature of y = x? at the origin.
Solution

We have y = x?

~y, =2xandy, = 2.

~At(0,0),y; =0andy, = 2.

Let (a, B) be the centre of the curvature at (0, 0).
ca=x-Z2A+yd)=0.

Y2

1+y2 1
= + —=—
B=y+—"=3

~ Centre of curvature is (0%)

Example 22
Find the evolute of the curve given by x = acos3 8 and y = asin3 6.
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Solution

We have x = acos®8 andy = asin® 4.
sy, =—tan®fand y, = isec”‘ 0 cosecd
Let (a, B) be the centre of curvature.
sa=x—2(1+yd).

vz
3atan 9(1+tan2 0)

_ 3
=acos” 0+ sec* 0 cosec
= acos3 8 + 3asin? 6 cos 6. (M
1+yf
=y 4+ 24
B=y+—

. 3a(1+tan? @
=asin®6 + 3a(1+tan’ 0)
sec* 0 cosec 6

=asin®0 + 3acos?Osinh (2)

Now, to find the equation of the evolute, we have to eliminate 8 from (1)

and (2). From (1) and (2), we have
a+ B = a(cos B + sin6)3.
a— B = a(cosf — sinG)3.
2 2 2 2
(a+B)s+ (a—pB): =a3(2) = 2as.
2 2 2
The locus of (a, B) is (x + y)3 + (x — y)3 = 2as.

Example 23
Find the evolute of the parabola y? = 4ax.
Solution
We have y? = 4ax.
(1
4q?

2a
S yl = 7and yz = _F.
Let (a, B) be the centre of curvature.
a=x—2(1+y2).
Y2

2 2
+4a
= x4+ 2

2a

=3x+2a (by(1) (2)

1+yf
=y+—=
B=y+—

=-= (by (1)) (3)
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From (2) and (3) eliminating x, we have
2 _ ﬁ _ 4(a-2a)3
ﬁ - a - 27a

~27a B? = 4(a — 2a)3.
=~ The locus of (a, B) is 27a y? = 4(x — 2a)3.

Example 24

The normal to a given curve is tangent to its evolute.

Solution

We know that the coordinates of the centre of curvature of the given curve
1+yf

N

A= ( )23’13’2—(1"‘3’ )[w]

dx y2
=1-2y2 - +y)(1-27).

3
= =3y + 5P+ = — S GyE v — vl
2 Y2

2y1Y5- (1+Y1 )J/3]

are given bya=x—&(1 +yiiB=y+

1
Now, —ﬁ =y + [ = y—22(3Y13/22 = ¥3 = ¥iys).

.%__i

" da v’
(M
But % is the slope of the tangent to the evolute and y, is the slope of the

tangent to the given curve at the corresponding point and their product is
—1 by (1).
-~ Tangent to the evolute is normal to the given curve.

Exercise 5
1. Find the coordinates of the centre of curvature at the indicated points.
. 11 ..

(i) y =x%at (E’Z) (i) xy = c? at (c, ¢)

(iii) x = a(cost + tsint); y = a(sint — tcost) at't’

(iv) y = x log x at the point where y' = 0.

2 2

2. Show that the evolute of the elllpse = + = =1is (ax)3 + (by)s =
(a? — bz)g.
3. Find the evolutes of the following curves.

() 2xy = a?
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(i) x = a[cost + logtan (é)]; y = asint.
(iii) x = a(@ — sinB); y = a(1 — cosH).
Answers

1. (i) (—%,%) (i) (2¢, 2¢) (iii) (acost,asint) (iv) (é, 0)
3.0) (x + y)é + (x — y)§ = 2a§ (ii) y = a cosh (g)
(iii) x = a(@ — sin0); y = a(1l — cosh).

2.6 Envelopes
Introduction

Some curves can be obtained as the envelope of a family of
curves. In fact any curve is envelope of the family of all the tangents to the
curves.

In this section we discuss the method of finding the envelope of a
given family of curves.
Envelopes - One parameter family of curves
Definition

Consider an equation of the form f(x,y,a) = 0 (1)

For any particular value of a equation (1) represents a particular
curve. For different values of @ we get a family of curves and the equation
(1) is said to represent a one parameter family of curves with a as
parameter.

Examples

1. The equation y? = 4ax represents a family of parabolas with a
common axis and vertex. Here a is the parameter.

2. The equation x% + y% — 2ax = 0 represents a family of circles
with their centres lying on the x-axis and passing through the origin. Here
a is the parameter.

3. The equationy = mx + % represents a family of straight lines

where m is the parameter and a is a given constant.

Note Let f(x,y, @) = 0 represent a one parameter family of curves. Then
the curves corresponding to two adjacent values of @ need not intersect.
For examples x2 + y? = a? represents a family of concentric circles with
centre at origin and any two curves of the family do not intersect.
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Definition

Let f(x,y,a) = 0 be a one parameter family of curves such that
any two curves correspond to adjacent values of a intersect.

Now, consider two curves of the family given by f(x,y,a) =0
and f(x,y,a + h) = 0 where his small. As h — 0 the points of intersection
of the above two curves will tend to a limiting position and the locus of all
these limiting positions is called the envelope of the given family of
curves.

Analytical method of finding envelopes

Let the equation of a one parameter family of curves be
fy,a)=0

(M

Consider two adjacent members of the family given by
f(x,y,@) =0and f(x,y,a + h) = 0. The points of intersection of these

curves satisfy both these equations and hence satisfy the equation

fayath)—feoy.a) _ 0
— .

~ The coordinates of the limiting positions of the point of
intersection satisfy the equation

Jim LE2 etV @y _ g 6) 2L — g, )
h-0 h ax

=~ The envelope is founded by eliminating a between (1) and (2).

If the given family of curves involves two parameters and further
parameters are connected by a relation then the analytic method of
finding the envelopes is given below,

Consider a two parameter family of curves given by f(x,y,a,b) =
0 (1)
Suppose the parameters a and b are connected by the relation g(a, b) =
0. (2)

Now, (1) can be regarded as a one parameter family of curves with
a as a parameter if b is considered as a function of a given by (2).
Differentiating (1) and (2) w.r. t. @ we get,

fat £y (5) =0 3)
“Z9at9p (%) =0.
@

Comparing (3) and (4) we get fa _Tb

Ya 9b

= A (say)
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“fa=A9gaandf, =1 gy
(5)

Eliminating a, b and A from (1), (2) and (5) we get the required envelope.

Theorem 2.2
The envelope touches each member of the given family of curves
at the corresponding points.

Proof

Let the equation of the one parameter family of curves be

fGy,a) =0. (1
We know that the envelope is obtained by eliminating « between (1) and
fa(,y,a) = 0. (2)

Now, differentiating (1) w. r. t. x we get,

d
oy, a) + fy(x'y' a)é =0.
Ly
" dx fy’
=~ The slope of the tangent to the curve (1) is —1’:—".
y

Now, the envelope can be represented by (1) provided « is regarded as a
function of x, y given by (2).
-~ Differentiating (1) w. r. t. x considering « as a function of x and y, we get

d a da d
fx+fyﬁ+fa£+fa£ﬁ =0
St =0, (by (2))

=~ Slope of the tangent to the envelope is — ?—" .
y

~ The slopes of the tangents to the curve and the envelope at the
common point are equal. Hence they touch each other.

Note

In page 99, we have proved that the normals to a curve are tangent to its
evolute. Hence the evolute of a curve is the envelope of the normals to the
curve.

Example 25
Find the envelope of the family of lines y = mx + %where a is a constant.
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Solution

Let f(x,y,m) =y—mx—%=0 (1)
af _ a _
ﬁ_():) X+m2—0.
am?=2
X
(2)

The envelope is got by eliminating between (1) and (2).
2
From (1) y2 = (mx +%) .
2
=m?x? + 2ax + —.
m
=ax + 2ax + ax [using (2)]

= 4ax.
=~ The envelope is the parabola y? = 4ax.

Example 26

xcosa |, ysina

Find the envelope of the family of curves — = 1 where a is the

parameter and a and b are constants.

Solution
flx,y,a) =—xczsa+w— 1=0.
(M
L ) P)

The envelope is got by eliminating a between (1) and (2).
Squaring (1) and (2) and adding we get

; 2 ; 2
xcosa |, ysina xsina , ycosa
a b a b

2 2
Z_Z (cos?a +sin?a) + Z—Z(sin2 a+ cos?a) = 1.

X2 y?
--—+§—1.

a?
Thus the envelope of the given family of curves is an ellipse.

Example 27

Find the envelope of the family of circles x? + y? — 2ax cosf —
2ay sin 8 = c? where 8 is the parameter.

Solution

x? +y% — 2ax cos 6 — 2ay sin§ = c? (1
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Differentiating w. r. t. 8 we get
—2axsinf + 2aycos6 =0
(2)
Squaring (1) and (2) and adding we get the envelope as
4a?(x? + y?) = (x2 + y2 — c?)2.

Example 28

2 2
Find the envelope of the family of eIIipsesZ—2+Z—2= 1 where the two

parameters a and b are connected by the relationa + b = c wherecis a
constant.

Solution
Using the relation a + b = c the given equation can be written as
2 2
LTI A (1)

a? = (c-a)?

which is a one parameter family of curves with a as the parameter.

. e . 2x2 2y?
Differentiating partially w. r. t. a we get — —- + @L)g =0.
a —-a
L (c-a)d _ y?
T T R
1 2
c-a _ (y2)3 3
—=\z) ==
a x2 5
2 2
. cx3 cy3
~a=—F—andc—a=—57.
x3+y3 x3+y3

2 2 2
Substituting these values in (1) we get x3 4+ y3 = ¢3 which is the required

envelope.

Example 29

Considering the evolute of a curve as the envelope of its normals find the
evolute of the ellipse.

Solution

Let P(a cos 8, b sin 8) be any point on the ellipse.

The equation of the normal at P is

ax secd — by cosec = a? — b? M
Thus (1) represents the family of normals with 8 as the parameter.
Differentiating partially w. r. t. 8 we get

ax sectan 8 + by cosec8 cotd = 0.
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by secHtanf

. _ by __ secbtant 3
" ax  cosecfcotd tan” 6.
1
~tanf = — (b—y)3.
ax
1 1
3 3
Hence sin@ = iLl and cos @ = iLl
2 212 2 212
[(ax)§+(bY)§] [(ax)§+(b30§]

Substituting in (1) and simplifying we get the equation of the required
evolute as (ax)?/® + (by)?/3 = (a? — b?)?/3.

Exercise 6
1. Find the envelopes of the following family of curves.
i)y =mx+ m; mis a parameter.
(ii) y? = 4m(x — m); m is a parameter.
(iii) x + y sin 8 = a cos 6; 0 is a parameter.
2. Find the envelope of the family of straight lines % +% = 1whereaand b

are connected by the relation.
a+b=c (i) ab = c? (i) a™ + p™ = k™
3. Considering the evolute of a curve as the envelope of its normals find

the evloutes of the following curves.

2 2

(i) y? = 4ax (i) =25 =1
(iii) x = a(cos 6 + sinB); y = a(sinf — 6 cos H).
Answers
LOS+2=1  ()y=4x  (ii)x®—y?=a?
a b2

2.(0VE+y=ve (iday=c> (i) T+ L= LT
3.() 4(x — 2a®) = 27ay? (ii) (ax)g + (by)g = (a? + bz)g

(iii) x% + y% = a?.
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UNIT-llI
APPLICATION OF DIFFERENTIATION 11

3.0 Introduction

In this chapter also we shall discuss some important applications
of differentiation such as the Maxima and Minima of functions of two
variables, errors and approximation, Jacobians, Multiple point,
asymptotes, curve tracing and Taylor’s series expansion.

3.1 Maxima and Minima of function of two variables

The reader is familiar with the method of obtaining the maxima
and minima of functions of one variable. It may be recalled that the
function y = f(x) has a maximum ataif f'(a) =0and f"(a) < 0 and
has a minimumat aif f'(a) = 0and f"'(a) < 0.

In this section we describe the method of finding the maxima and
minima of functions of two variables.

A function f(x, y) of two independent variables x and y is said to
have a maximum at (a, b) if
fla+hb+k)—f(a,b)<O
for all sufficiently small values of h and k.

Suppose f(x,y) attains a maximum or minimum at (a, b). Then

of _ of _
a—ay—Oat(a,b).

Working rule for finding maxima and minima of f(x, y).
Step 1: Let (a, b) denote the solution of the equations

of _

ax 0

of _
and 3y 0

(M
. _¥f p_ 9 =9

Step 2: Let A = axZ'B = 9%y and C = 27 at (a, b).
Step 3: Then,

(@ If AC—B?>0and <0 (orB <0), then f(x,y) has a
maximum at (a, b).

(b) If AC—B?>0and >0 (or B>0), then f(x,y) has a
minimum at (a, b).
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(c) IfAC — B2 < 0, then f(x,y) has neither a maximum nor a
minimum at (a, b). In this case (a, b) is called a saddle point.

(d) No information is obtained if AC — B?> = 0. In such a case
further investigation is necessary.

Example 1

Find the maximum or minimum values of u = x3y?(1 — x — y).
Solution

u=x’y*(1-x-y)

22 =3x2y2(1—x —y) — 2%y

U _ 6y 21 —x —y) — 6x2y?

—— = 6xy y y

U _ 53001 — o — v) — x3u2

oy = X YA —x—y)—x7y

U _ gy (1—-x—y)—2x3y — 3x2%y?
oy y y y = 3x%y
u _ 2x3(1 —x —y) — 2x3y — 2x3

57 y y = 2x%y
Z—Z= 0 =23x%y*(1—-x—y)—x3y*=0

=>x*y*B(l-x—-y)—x] =0
=4x+3y=3 (M

R _ 0= 2x3y(1 —x —y) —x3y2 =0

ay
=>x3y21-x-y)—y]=0
=>2x+3y=2 (2)

Solving (1) and (2) we get x = %and y = %
0%u 11
Now, 4 =25 at (3.3)
_ 2 A _ 2.2 11
=6xy“(1—x—y)—6x°y*at (2,3)
_ 1

T 9
0%u 11
B = at (— —)
dx0y 2’3

=6x%y(1—x —y) —2x3y — 3x%y? at G,E)

3

_ 1

12
%u 11
¢ =2 ar (1)
dy2 2’3

11
=2x3(1—x—y) —4x3yat (E’E)

78
Differential and integral calculus



__1
- 8
Now, AC —B? = — -~ =1

72 144 144
Also A is negative.

is positive.

~ The function has a maximum at G%)

The maximum value of u is given by
3 2
u(33)=6) G (-3-3) =

Example 2

Prove thatu = x3 + y3 — 3axy is a maximum or minimum atx =y =a
according as a is negative or positive.

Solution

u=x3+y3—3axy.

u
&~ — = 3x% — 3ay.
ox y
%u
— = 6x.
dx2
u
— = 3y? — 3ax.
ay y
2%u
= —3a.
0xdy
9%u
and— =6
ay?
Atx=y=a A=2t=6
X =Yy=a, =9z a
2%u
= = —3a.
ox0y
=507

Now, AC — B? = 36a? — 9a? = 27a? which is positive.

Also, A = 6a is positive or negative according as a is positive or
negative.

Hence u(x, y) is maximum or minimum atx = y = a according
as a is negative or positive.

Example 3

Find the extreme values of xy(a — x — y).
Solution

Letu = xy(a —x — y).
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Z—Z =ay — 2xy — y2.
2271;2 —2y.
z—;=ax—x2—2xy.
aa:al; =aqa-—2x—2y.
2271;2 —2x.

Now,z—z=0$y(a—2x—y)=0.
>y=00ra—2x—-y=0.
(M

ou

5=0=>x(a—2y—x)=0.

=>x=00ra—2y—x=0.
(2)
From (1) and (2) we have the following four pairs of equations:
iy=0,x=0.
(il)y=0,a—2y—x=0.
(iila—2x—y=0,x=0.
(ivia—2x—y=0,a—2y—x=0.
Solving these equations we get the following four points as solutions

(0,0, (0, @), (a, 0) and (g,g).

Case (i):

. _62u_ . _62u_ . _62_u_
At point (0,0) A =oE 0; B= oxdy = a; C= 372
« AC — B? = —a?, which is negative.

~ u(x, y) has neither a maximum nor a minimum at (0,0).
Case (ii):

At point (0,a) A = ‘;27;‘ =-2a; B = a";a”y ——ac=24_y
« AC — B? = —a?, which is negative.

~ u(x, y) has neither a maximum nor a minimum at (0, a).
Case (iii):

At point (a,0) A _Qu_ 0; B
) axz )

%u %u
= =—q;, C =— = —-2a.
0xdy

« AC — B? = —a?, which is negative.
~ u(x, y) has neither a maximum nor a minimum at (a, 0).
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Case (iv):

. a a 9%u 2a 9%u —-a 9%u 2a
Atpoint (3,5) 4 =35 = =5 B=goo =S 0 =30 = -3
2 _4a? a? _a? . . . . i
~AC — B =5 =5 which is positive. Further 4 is negative or

positive according as a is positive or negative.
~ At (gg) ,u(x, y) is a maximum or a minimum according asa >
Oora<.

a a a? 2a a?
The extreme value = u (;,5) =5 (a — ?) =—,

Example 4
Discuss the maxima and minima of u(x, y) = sinx siny sin(x + y), where
0<x<mand0<y<m.
Solution
u(x,y) = sinx sinysin(x + y).
z—z = siny [sinx cos(x + y) + cos x sin(x + y)].
= sinysin(2x + y).

Qu _ 2sinycos(2x + y)
ax2 y Y.

Z—; = sin x [siny cos(x + y) + cos y sin(x + y)].

= sinx sin(x + 2y).

2

Sady sin x cos(x + 2y) + cos x sin(x + 2y).

3 = = 2sinx cos(x + 2y).

Now,% =0 =sinysin(2x +y) = 0.

When 0 <y < m,siny # 0.

Hence sin(x + 2y) = 0. (1)
Similarly, Z_Z =0 = sinysin(x + 2y) = 0. (2)
~From(1)and (2) weget,2x + y =mand x + 2y = m.

Solving these equations we get = g,y = %

NowA—a—u t( )

sin (5) cos (5 +)

=251n( )cosn— —/3.
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B=gaat(55)

= sin (4?”) = —/3/2.
c=51at(5.3)

= 2sin (g) cosm = —/3.

~“AC—B?=3-— % = z, which is positive and A is negative.

~ u(x,y) is a maximum at (gg)

. . 3 . T . 2m 3v3
Maximum value = sin (;) sin (5) sin (?) = T\/_ .
Exercise 1
1. Find the maxima and minima for the following functions.

(i) x3—y2—3x
(i) 2a’xy — 3ax?y — ay® + x3y + xy5.
(iii) xy?z3 — x2y?2z3 — xy3z3 — xy?z*.
(. x+y

V) —5——F5—
) x242y2+6

(v) 2 sin (%) cos (%) + cos(x +y)
2. Show that the function u(x,y) = 2x2y + x? — y? + 2y has no extreme

value.
3. Prove that x* + 2x%y — x? + 3y? is minimum when

—4¥3 o1
x =+ Y=g
4. Prove that u = x?y? — 5x% — 8xy — 5y ismaximumatx =y = 0.
Answers
1.(i)) x = =1,y = 0 gives a maximum. Maximum value = 2.

(i) Max at (37‘1—%)(%%) Min at (g—g) neither max or min at
(a,a),(a,—a).

108 a’
(iii) Max value ‘.

77
(iv) Max at (2, 1); Min at (=2, —1).
Vs

(VMinatx =y = 2nn—§;Maxatx=y=nn+(—1)" o
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3.2 Errors and Approximation

If a quantity u is a function of some variables say x;, x5, ..., x,, then
an error in one or more of the variables x,, x5, ..., x,, will produce a
corresponding error in the value of u also. An important practical
application of differential calculus is to determine the error upon the result
of the calculations which arise due to the errors in the measurements of
quantities on which the calculation depends.
First we shall deal with functions of a single variable.

3.2.1 Approximation in the case of functions of one variable
Let y = f(x) be a function having continuous first order
differential coefficient. Let there be an error Ax in determining the value of
x. Then the error in the value of y is given by
Ay = f(x + Ax) — f(x).
LAy fOerAD)—f(x)
Tax Ax '
Now, by the definition of derivative
i—z = f'(x) + £ provided 0 < |Ax| < § where € > 0 is arbitrary.
S fle+Ax) —f(x) = f'(x)Ax + eAxand € - 0 as As — 0.
~ Ay = f'(x)Ax (approximately).
Ax is called the absolute error in x.

Ax . . .
—is called the relative error in x.
X

Ax—x X 100 is called the percentage errorin x.

For example, suppose that, in measuring the length of a rod of
length 10 c. m. an error of 0.2 c. m. is made. Then the absolute error is 0.2 c.
m, the relative error is 0.02 c. m. and the percentage error is 2.

Example 5
The time of oscillation T of a simple pendulum of length [ is given by the

formulaT = 2m (é) Find the percentage error in T (i) if L is increased by

1% (ii) if the pendulum is removed to a place where g is diminished by
0.04% [ remaining unaltered.
Solution

We have T = 21 (é) (1)
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1

(i) Taking logarithm and differentiating w. r. t. [ we get = (dT) =3

-~ The error relation is ? = Z ah.
AT 1 (Al
 (57)100 =5 (F) 100
= % (since percentage errorinl = 1)

-~ Percentage errorin = %
(i) In (1) taking logarithm and differentiating w.r.t. g

+(ag) = 30"
AT 1/A
“7==3)
+ () 100 = =2 (%) 100
- (_ %) (0.04) = —(0.02).

~ Percentage errorin T = —0.02.
~ T is decreased by 0.02%.

Example 6

The radius of a sphere is measured and it is 18 c. m. If an error of 0.08 c. m.
is made in the value of radius find the percentage error in the volume of
the sphere.

Solution

Let r be the radius of the sphere.

=~ Volume of the sphere V = S w7,

Taking logarithm and differentiating w.r. t. r.
1 (d_V) =3

VvV \dr T

~ The error relation isA—V =3 (Ar—r)

. ( )100_3 (= )100_3(""8)100 :

3

wl»p

-~ Percentage error in the volume =

Example 7
The area of a triangle is calculated from the angle A and C and the side b. If
a small error 64 is made in measuring A show that the percentage error in

100sinC
sin Asin(4+C)

the areaiis ( ) 6A approximately.
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Solution
Let S be the area of the AABC.

Then S = %bc sin A

=1p (—bfmc) sinA (since ,b == )
2 sin B sin B sinC

_ (ﬁ) sinAsinC
"\ 2/ sin(a+c)

Taking logarithm and differentiating w.r. t. 4,

3 (d_S) __cosA _ cos(A+C)

s\da) ~ sina  sin(4+C)

COs A cos(A+C)
sind  sin(4+C) '

sinC SA

" sinAsin(A+C) '

AS 100sinC . . .
-~ (?) 100 = (m) A which is the percentage errorin S.

. . AS
« The error relation is <= [

Exercise 2

1. The radius of a sphere was measured and found to be 21 cm with a
possible error in measurement of atmost 0.05 cm. What is the maximum
error in using this value of the radius to compute the volume of the
sphere?

2. The time of swing T of a pendulum is given by T = kvl where k is a
constant. Determine the percentage error in the time of swing if the
length of the pendulum [ changes from 32.1 cm to 32.0 cm.

3. A circular template has a radius of 10 cm (£0.02). Determine the
possible error in calculating the area of the templates. Find also the
percentage error.

3.2.2 Approximations in the case of functions of several variables
Total differential

Letz = f(x,y) be a function of two variables with continuous
first order partial derivatives.

Then Az = f(x+ Ax,y +Ay) — f(x,y) is called the total
increment of z. Now,
Az = f(x + Ax,y + Ay) — f(x,y + Ay) + f(x,y + Ay) — f(x, p).

= fo(x + 6,Ax,y + Ay)Ax + f,(x,y + 0,4y)Ay

where0< 60, <1;0<60, <1.
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Now, since the partial derivatives f, and fy are continuous,

lim fo(x +6,4x,y + Ay) = f(x,y) and
X,Ay—
g fyCoy + 0287) = £,(x, ).
o file + 6,Ax,y + Ay) = f.(x,y) + & and
fy(x,y + 0,4y) = f,(x,y) + &, whereg; and &, - 0as Ax and Ay — 0.
~ Az = f,(x, y)Ax + f,(x, y)Ay + &, Ax + €,4y M
Now, let Ap = [(Ax)? + (Ay)?]'/>.
A A
Then slﬁand szﬁ - 0asAp — 0.
~ gAx + g,Ay is an infinitesimal of higher order relative to Ap.
Now, in (i) fi(x,y)Ax + f,(x,y)Ay is linear in Ax and Ay arc is

A

called the principal part of the increment Az and it differs from Az by an

infinitesimal of higher order relative to Ap. The expression dz = Z—iAx +

%Ay is called the total differential of f (x, y).

~Az=dz+ g Ax + &,Ay and Az differs from dz by an
infinitesimal of higher order relative to Ap. Hence dz = Az approximately.

The increments Ax and Ay of the independent variables x and y
are called the differentials and we denote them by dx and dy respectively.

Then the total differential takes the form dz = z—i dx + Z—§ dy.

Note

1. This idea of total differential can be generalized to functions of
several variables.

2. Since the total differential dz is approximately equal to the total
increment Az, we can calculate the error in z due to the error in the
independent variables.

Example 8
The range R of a projectile which starts with a velocity v at an elevation a
is given by R = (v?sin 2a)/g. Find the percentage error in R due to an

. 1 .
error of 1% in v and error of;% ina.

Solution
We have R = (v?sin2a)/g.
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Taking logarithm and differentiating totally,
——2( )+2cot2a da.
R

~ The error relation i |s —=2 (A—v) + 2cot2a Ac.
+(F)100 =2(% )100 + 2a cot 2a (*£) 100.
=2(1) + 2a cot2a (%)

=2+ acot2a.
The percentage errorin R is 2 + a cot 2a.
Example 9

The focal length of a mirror is given by the formula——; ==. If equal

errors 6 are made in the determination of u and v, show that the relative
error in the focal length is given by (i + %) 6.

Solution

1 2uv

e f__

v

Taklng Iogarlthm and differentiating totally we get

ﬂ _ d_u d_v _ du—dv

fu v u-v

~ The error relation is 2L = &% 4 &2 _ fu=dv

f v u-v

=£+£_ﬂ= (£+£)5
u v u—-v u v

Hence the result.

Example 10
Find the percentage error in calculating the area of a rectangle when an
error of 2% is made in measuring its sides.

Solution

Let a and b be the length and breadth of the rectangle.
~ Area S = ab.

~logS =loga + logh.

Differentiating we get E = E + 2_

(%) 100 = (%2 )100+( )100_2+2_4

~ 4% error is made in calculating the area when there is an error of 2% in
measuring the sides.
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Example 11

A triangle ABC is inscribed in a fixed circle. If the vertices be moved

Aa Ab Ac
+

COS A cosB cosC

slightly on the circle prove that =0 where Aa is

absolute error in a etc.
Solution
Since AABC inscribed in a fixed circle we have a = 2RsinA4;b = 2Rsin B
and ¢ = 2R sin C where R is the circum-radius of the triangle ABC.
Thus the error relations are
Aa = 2R cos A (AA).
Ab = 2R cos B (AB).
Ac = 2R cos C (AC).

Loy 240 A—CC=2R(AA+AB+AC).

=2RAA+ B+ ().
= 2R(Am).
= 0 (since 7 is constant).

COSA cosB cos

Aa Ab Ac
" cosa cosB cosC

Example 12
In a triangle ABC the angles and the sides b and c are made to vary in such
a way that the area remains constant. Show that if b and ¢ vary by small
amounts 6b and dc respectively then b cos B + §c cos C = 0.
Solution
In any triangle we have the relation S = %bc sin A where S is the area of
the triangle ABC.

db

. . . I ds _ (db de
Taking logarithm and differentiating we get—= ( ) ) + ( - ) + cotA dA.

Error relation is AS—S = %b + % + cot A AA.

Since, by hypothesis, S is constant = AS = 0 we have

0=%+%+cotA(—AB—AC) (1)
(sinceA+B+C=nm=>AA+AB+AC=0)

1 .
Also S = 5 acsin B.

28 54 otB AB.
S c

0 =%+cotBAB.
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#AB =—%tanB.
c
Similarly, AC = — 2 tan C.
From (1)
Ab | Ac éc Sb
0= > + - + cot4 (TtanB +7tan C).
= i—b(l + cotAtanC) + %(1 + cotAtan B).

[/ cos AsinC 5c cos AsinB
- (1) 14 )

b sinAcosC c sin Acos B
_ (sz) sin(4+C) (zSc) sin(A+B)
" \b/sinacosc sinAcosB
_ (6b) sin B + (60) sinC
b /sinAcosC c/sinAcosB’
&b 5c . sinB sinC
= + = (since — =—)
cosC cosB b c

~6bcosB + &ccosC = 0.
Exercise 3

1. The work that must be done to propel a ship of displacement D for a
3

s2p2
t2

distance s in time t is proportional to( ) Estimate roughly the

percentage increase or decrease of work necessary when the distance is
increased by 1% the time is diminished by 1% and the displacement of the
ship is diminished by 3%.

2. The side a of a triangle ABC is calculated from the sides b and c and
angle A. If small errors éc, b, 5A are made in the values of ¢,b and A
respectively prove that the error §a in the calculated value of a is equal to
cosB 8c + cosC b+ bsinC SA.

3.3 Jacobians

In this section we introduce the concept of Jacobian of a
transformation which plays a vital role in change of variables in any
transformation of one coordinate system to another. This concept is useful
in any transformation of one coordinate system to another. This concept is
useful in the theory of integral calculus in the evaluation of double and
triple integrals.
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Definition

Consider the transformation given by x = x(u,v),y = y(u,v)
where the function x and y have continuous first order partial derivatives.
Then the Jacobian of the transformation is defined as

Jx Ox
= du OJv
9 9y
Ju Jdv
. . _0(xy)
The Jacobian ] is also denoted by = T

ox Ox
axy) _ |ou v
a(u,v) - B_y 6_y '

du Odv

For a transformation in three variables
x =xw,v,w),y =y,v,w),z = z(u,v,w) the Jacobian J is given by the
following determinant of order three.

Hence ] =

ox O0x Ox

% % ow
_O0yz) |9y ay dy

T o(wv,w)  |ou av ow
0z 0z 0z

ou v ow

Example 13
The transformation from Cartesian coordinates (x, y) to polar coordinates
(r,0) isgivenby x = rcosf andy = rsiné.

Solution
ox 0x
] = ar o8| _|cos@ —rsinf| _
"1 7)oy 9| T Isin@ rcos6 |
ar 00
Example 14

The transformation from Cartesian coordinates (x, y, z) to cylindrical polar
coordinates (r,6,z) isgivenby x =rcosf8,y =rsinf,z = z.
cosf —rsinf 0

sinf rcosf O
0 0 1

Then] = dryz) _ =r.

a(u,v,w)
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Example 15
The transformation from Cartesian coordinates (x, y, z) to cylindrical polar
coordinates (r,6,¢) is given by x =rsinfcos¢,y =rsinfsing,z =
rcosé.
sinfcos¢ rcosfcos¢p —rsinbsing
sinfsin¢g rcosfsing rsinfcosed
cosf —rsinf 0
= sin @ cos ¢ (r? sin? O cos ¢) — 7 cos O cos ¢ (—7 sin B cos G cos ¢)

— rsin @ sin ¢ [—r sin? 8 sin ¢ — r cos? G sin ¢]
= 12[sin3 8 (cos? ¢ + sin? ¢) + cos? O sin O (cos? ¢ + sin? ¢)]
= r2(sin3 0 + cos? 6 sin )
=125sin 0 (sin? 6 + cos?H) = r? sin 6.

Then] = g((x;’;))

Example 16
Consider the transformation x + y = u, 2x — 3y = v.

Solving the two equations we get x = Su+ % vandy = é u-— % v.

5
3 1
_9ey) 15 o511
owv) (2 1 5
5 5
Note Hence u and v are functions of x and y. The Jacobian /' of u and v w.
ou ou
. , 0wy _ |ox ay| |1 _
r.t.x and y can be writtenas J' = ) — |ov av| = |2 _3| =
ox 0dy
Properties of Jacobians
Result 1
Letx = x(u,v);y = y(u,v).If] = a(xy) andJ' = 6(uv) th njj'=1.

Proof

Since x = x(u, v) and y = y(u, v) we shall assume that we can solve these
equations to obtain the values of u and v in terms of x and y. Hence we
have u = u(x,y) and = v(x V).

oy
Wehave——l ——1 X_op=2,
oy ady ox
ox dx du dx 0v
—_—=ls—4——=
NOW' aox 1 du dx + v 0x 1
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dx dxodu , 9x v _

—=0=>=—— = 0.
ay dudy 0vay
a dydu 0y odv
o2 2T ),
ox du ox v 0x
a dy du , 0y dv
A I S
dy oudy 9vady

ox Ox Ju odu
a(x, a(uy ou  ov ax 9
NOW,]], — ( y) X ( ) — ou v y

= X
a(uwy)  a(xy) dy 9y v dv

ou Odv E ay
Oxdu , O0x0v 0Oxodu , 0x0v
ouox  ovox oudy ' dvay
dyou A, dyodv dyodu , dydv
ouox | ovox odudy ' ovay

=l il=
L] =1

Result 2

If u and v are functions of r and s and r and s are functions of x,y then
o(wy)  a(rs) _ a(uw)

ars) T aGy) Ay’

Proof
du  du or  or
own)  0ws) _or as|y [0 o
a(r,s) a(x,y) 3_17 3_17 6_5 E
or 0s dox 0dy
ou or duds Oduor du ds
|matma waytaey
dv ar dvds Ovor dv s
orox ' dsox ordy | dsdy
du Ju
_ E 5 _o(wy)
N G B TeRoN
ox 0dy
Example 17
fu="2andv =tan" x + tan~' y find G
1-xy o(xy)
Solution
u _ A-x)+(x+y)y _ 1+y?
ox (-2 (1-ap?’
Similarl ou _ 1+x2 Jov 1 ov 1
|m|ary,£——(1_xy)2, a—m, 5—@
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ou du 1+y2 1+x2

No o(uyv) _ |ox dy| _ |(1-xy)2 (1-xy)?
"otry)  [ov av[ T 1 1
x 0y 1+x2 1+y2
1 1

T -2 a-w?

Example 18

Ifu=ny,v=x2—yz,x=rc050,y=rsin9ﬁndM

Solution
u = 2xy = 2r? cos 6 sin 6.

= r?sin 26.
v=x%—y2=7r2cos?6 —r?sin® 0

=12 cos 26.
gu du
Now 2@ _ |or 26| _ |27 sin26 212 cos 20
are |9v ov 2rcos28 —2r?sin26
ar a6
= —47r3(sin® 26 + cos? 20).
= —4r3,
Example 19
fu=x+y+z
w=y+z
(2)
uvw = z
3)
Show that 2822 — 42y,
a(u,vw)
Solution

First we solve for x, y, z in terms of u, v, w.

2)=>y=uv—2=z
=>y=uv—uvw =uv(l —w).

Mau=x+@y+2)2u=x+uv
=>x=u(l-v).

3) =z =uvw.

a(r,0e’

Differential and integral calculus
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dx O0x Ox

ou Odv oOw

Now 20¥2 _ |9y oy 3y
a(u,v,w) ou odv Jow

dz 0z 0z
u v ow
1—v —u 0
=lvl-w) u(l-w) —-uv
vw uw uv

=1 -v)[uiv(1l —w) + v?vw] + u[uv?(1 — w) + uv?w]
=u?v — u?v? + u?v.
= u?v.

Example 20
oxy)  o(wy) _
awy) " akxy)

If x = ucosv,y = usinv prove that

Solution
Given x = ucosv
(M
y =usinv
(2)
. 9(xy) _ |[cosv —usin 17| _
a(uv) sinv ucosv

Also from (1) and (2) we get u = \/x2 4+ y2 and v = tan~1(y/x)
ou Ju x y
Cowy) _ |ox  oy| _ /x2+_y2 W
Totey) v oy T |__ ¥ x
ox 9y x2+y?  xZ+y?
2 2
=z xz + - .
(x2+y2)3/2  (x24y2)3/2
__x+y?
T (x2+y2)3/2°
1
= e
=1
==,
oxy)  d(uy) _ 1_
N "owy) T axy) i L
Example 21
A(uy,
ifu=2,v==2w==prove that wow) _
* y z a(x,y.2)
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Solution
ou ou ou

— - - yz Z y
dx 0Oy 0z ) x X
o(uvw) dv  ov v _ z oz x
axyz) |ox oy az| | v y? y
ow dw ow y x _xy
dx Ody 0z z z z2
yz
- A
* y
zx
= —1 VA _—
xyz y
x
y x =

z

= [ 22 - y?) - 2(—xy — xy) + y(az + x2)|

xyz x

-1 —
=07 [0+ 2xyz + 2xyz] = 4.

Exercise 4

1. Find the Jacobian of the following transformations.
3 3
N2x+3y=w;x—2y =v. (ii)uzx?;v:y;
(iiy)x =rsinfcos¢,y =rsinfsing,z =rcosh.
(iVix=u(l+v); y=v(1l+uw
_ou = ot 3y) | duw) _
2.1fx = e"cosvandy = e"sin v show that Yo X 3y
3. fu=x+y;v=x—yandx =rcosf;y =rsiné prove that%x
0xy) _ 0wy
a6 ~ a8

4 Ifu=—= sV = 4 W= z
Vi-r2 v1-r2 vi1-r2

o(uvw) .2 3
D) aA-r9z.

where 72 = x% + y? + z2 prove that

A(x,y) d(u,v)
a(uv) an axy)

5. If x =e"secu and y = eYtanu, find the Jacobians

A(xy) o(wy) _

Verify that ) 3y
Answers
N1 1 S .
1. (i) > (i) e (iii) =7 cos @ (ivVV1+u+v.
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3.4 Multiple point

On some curves there exist some special points through which
more than one branch of the curve pass. Such points are called singular
points.

In this section we classify various types of singular points lying on
acurve.

Multiple points
Definition

If r branches of a curve pass through a point then that point is
called a multiple point of rt" order.

A multiple point of order two is called a double point.
Note In general there are r tangents one for each branch at a multiple
point of order r. All the tangents need not be distinct and real. Hence we
can classify the multiple points according to the nature of the tangents at
the multiple points.

Classification of double points
Definition

A double point P is called a node if the two tangents at P are real
and distinct. In this case two real branches of the curve pass through the
point P.

A double point P is called a cusp if the two tangents at P are real
and coincident. In this case two real branches of the curve touch at the
point P.

If the tangents at P are imaginary then there are no real points on
the curve in the immediate neighbourhood of the point. Such a point is
called a conjugate point. Hence a conjugate point is an isolated point
whose coordinates satisfy the equation of the curve.

If the two branches of the curve at a cusp P lie on the opposite
sides of the common tangent then P is called a cusp of the first kind or
cusp of the first species.

If the two branches of the curve at a cusp P lie on the same side of
the common tangent then P is called a cusp of the second kind or cusp of
the second species.

Condition for a point (x, y) to be a multiple point of the curve f(x,y) = 0.
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Let the curve be f(x,y) =0

(M
Differentiating (1) with respect to x we get
fe+fy () =0 ®)
Where f, and f, denote the partial derivatives with respect to x and y
respectively.

At a multiple point the curve has more than one tangent. Hence

(Z—Z) must have more than one value at a multiple point.

But equation (2) is of first degree |n( x) Hence( )can have
more than one value ifand only if f, = f,, = 0.

=~ A point (x,y) on the curve f(x,y) = 0is a multiple point if and
onlyif f, = f, = 0.

Working rule
To find the multiple points on the curve we have to find those
values (x, y) which simultaneously satisfy the three equations

fO,y) =0; f(x,y) =0;f,(x,y) = 0.

The nature of the double point

Let (x,y) be a double point on the curve f(x,y) = 0.

Then f,.(x,y) = 0; fy(x' y) =0.

We assume that f(x,y) has continuous partial derivatives of
second order and they are not zero.

Now, differentiating (2) with respect to x we get

fxx+fxy( )"‘fyx( )"‘fw(y) +fy(dx2)_

fxx+2fxy( )+fyy( ) =0 3)
¢ fy =0and fxy = fyx)
Equation (3) is a quadratic in Z—Z .
Since fix fxy and f,,, are not all zero, two roots Z—z given by (3) will

be real and distinct or coincident or imaginary according as the
discriminant of the quadratic equation (3) is greater than zero or equal to
zero or less than zero.
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The discriminant is given by 4(fxy)2 — 4fafyy -
=~ The point is a node if (fxy)2 = faxfyy > 0.

The point is a cusp if (fey)”* = fuxfyy = 0.
The point is a conjugate point if (fxy)z — fexfyy < 0.

Note

1. The above conditions for the nature of double points are in fact
the conditions for two tangents at the double point to be real and distinct
or coincident or imaginary. Hence it cannot be always taken as a test for
node cusp or conjugate point.

2. The nature of the double point of a curve can be achieved by
shifting the origin to the double point and then testing the nature of
tangents and existence of the curve in the neighbourhood of the new
origin.

[ The equation (equations) of the tangents at the origin is obtained by
equating to zero the lowest degree terms in the equation of the curve].

3. If fux = fxy = fyy = 0 then the point (x,y) will be a multiple
point of higher order.

Example 22

Find the position and nature of the double points of the curve a*y? =
x*(2x? — 3a?).

Solution

Let f(x,y) = 2x% — 3a’x* —a*y? =0 (1

o fe = 12x° — 12a%x3

fox = 60x* — 36a%x2.

fry = 0.
fy = —2(14_’)/
fyy = —2a*.

The double point are got from f, = 0 and f,, = 0.
Now f, = 0 = 12x° — 12a%x3 =0

= 12x3(x%? —a?) = 0.

=2>x=0,a —a.
Also, f, = 0 = —2a*y =0
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=>y=0.
Hence the double points are (0, 0), (a, 0), (—a, 0).
Of these three points, only (0, 0) lies on the curve.
~ (0, 0) is the only double point.
At (0,0), firx = 0; f,, = —2a%; fy, = 0.
Now, (fey)* = fexfyy = 0 — 0 X (=2a*) = 0.
-~ The double point (0, 0) is a cusp.

2
But form (1), y = iZ—Z\/ZxZ — 3a2.

Hence for small values of x, positive or negative, 2x2 — 3a? is a negative.

Hence y is imaginary.
-~ No portion of the curve lies in the neighbourhood of the origin.
Hence the origin is a conjugate point but not a cusp.

Example 23

Find the position and nature of the double points of the curve x3 + x? +

y2—x—4y+3=0.
Solution
Letf(x,y) =x>+x*+y>—x—4y+3=0
Cfe =302+ 2x =1 iy =6x+2;f,, =0
fy =2y —4fy, = 2.
The double points are got from f;, = 0 and f,, = 0.
Nowf, =0=>3x2+2x—1=0
> Bx-1Dx+1)=0.

=>x=—1,§.
Nowf, =0=>2y—-4=0
=>y=2.

= The possible double points are (—1,2) and G 2).

We note that out of the two points only (—1, 2) lies on the curve
Hence (—1, 2) is the only double point.

At (_1, 2)'fxy = O;fxx =—4 fyy =2.

2
At (—1,2), (fiy)” = faxfyy =0—(—4) x2=8>0.
Hence the double point (—1, 2) is a node.

Differential and integral calculus
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Example 24
Find the position and nature of the double points of the curve x3 +
3x?y—4y —x+y+3=0.
Solution
Let f(x,y) =x3+3x%y —4y3—x+y+3=0 (1)
s fe=3x*—6xy —1;f, =3x* —12y* + 1.
The double points are got from f;, = 0 and f,, = 0.
Now f, =0=>3x2+6xy—1=0
(2)
fy=0=23x*-12y*+1=0 (3)
1-3x2
6x

From (2) we gety =

_352\2
Using (2) in (3) we get 3x% — 12 (*25) +1=0

% 9x* — (1 +9x* — 6x%) +3x%2 = 0.
% 9x%2 —1 = 0.Hence = i%.

Substituting the values of x in (3) we get 12y?% = g .Hence =+ § .
. . 11 1 1 11 1 1

The possible double points are (5,5) , (5, - E) , (— 5,5) , (— P 5)'

Out of these four points none satisfies the equation (1).

Hence there are no double points for the given curve.

Exercise 5

Find the position and nature of the double points on the following curves
Hx?(x—y)+y?>=0 (x> +y>—12x—27y+70=0

(iii) xy? — ax? + 2a?x —a® = 0.

Answers

(i) cusp at (0,0) (ii) Conjugate point at (0,0) (iii) node at (a, 0)

Kinds of cusps

Of the three types of double points the cusp can be distinguished
as two special kinds according to the nature of the curve at the cusp.

We know that at a cusp two branches of a curve have a common
tangent and hence the have a common normal also.
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Single cusp

A cusp is said to be a single cusp if the two branches of the curve
lie entirely on one side of the common normal at the cusp.
Double cusp

A cusp is said to be a double cusp if the two branches of the curve
extend to both sides of the common normal at the cusp.

Cusp of first kind (first species)
If the branches of the curve lie on opposite sides of the common
tangent at the cusp, the cusp is called the cusp of the first kind.

Cusp of second kind (second species)
If the branches of the curve lie on the same side of the common
tangent at the cusp, the cusp is called the cusp of the second kind.

Working rule to find the nature of the cusp at the origin
Case 1: The cuspidal tangents are y? =

In this case solve the given equation for y neglecting terms
containing powers of y higher than two.

(i) Single cusp: if the roots are real for one sign of x.

(i) Double cusp: if the roots are real for both signs of x.

(iii) First species: if the roots are opposite in sign.

(iv) Second species: if the roots are of the same sign.

Case 2: The cuspidal tangents are x? = 0

In this case solve the given equation for x neglecting terms
containing powers of x higher than two.

(i) Single cusp: if the roots are real for one sign of y.

(i) Double cusp: if the roots are real for both signs of y.

(iii) First species: if the roots are opposite in sign.

(iv) Second species: if the roots are of the same sign.

Case 3: The cuspidal tangents are (ax + by)? = 0.

In this case putp = ax + by and eliminate y or x (whichever is
convenient) from the given equation of the curve. Suppose we eliminate y
then we get an equation in p and x. Solve the equation for p (neglecting
p3 and higher power of p). Nature of the cusp will be decided as in case 1
(taking p for y) or case 2 (taking p for x).
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Case 4: Nature of the cusp at a point other than the origin
Transfer the origin to that point and proceed as in case 1 or case 2
or case 3 as the case may be.

Example 25
Show that the curve y?(2a — x) = x3 has a single cusp of first species at
the origin.
Solution
The equation of the curve is x3 + xy? — 2ay? =0 (1)

Equating to zero the lowest degree terms we get —2ay? = 0.
~ y% = 0,and it's roots are real and coincident.
Hence the origin is a cusp or a conjugate point.

From (1), we get = +x

(2)

When x is small and positive y is real. Hence real branches of the curve
pass through the origin.

~ The origin is a cusp.

Also from (2), y is real if x is small and positive.

~ The cusp is a single cusp.

Also for any small and positive value of x the two values of y are of
opposite signs.

~ The cusp is of first species.

Hence the origin is a single cusp of first species.

2a-x

Example 26
Show that the curve y3 = (x — a)?(2x — a) has a single cusp of first
species at (a, 0).

Solution

The equation of the curve is y3 = (x — a)?(2x — a) (1

Shifting the origin to the point (a,0) by putting x=X+ay=Y
equation (1) is transformed to Y3 = X2(2X — a) (2)

Equating to zero the lowest degree terms we get aX? = 0, whose
roots are real and coincident.

Hence the new origin (a, 0) is a cusp or a conjugate point.

From (2) solving for X neglecting X and higher powers of X we
get
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WhenY is small and positive X is real. Hence real branches of the
curve pass through (a, 0).

Hence (a, 0) is a cusp.

From (3), for one sign (positive) of Y the value of is real.

~ The cusp is a single cusp.

Also for any small and positive value of Y the two values of X are
of opposite sign.

~ The cusp is of first species.

Hence (a, 0) is a single cusp of first species.

Exercise 6

1. Show that the curve y%(2a — x) = x3 has a single cusp of the first
species at the origin.

2. Show that the curve y3 = x3 + ax? has a single cusp of first species at
the origin.

3.5 Curve Tracing
We are familiar with some standard curves such as the straight
line, circle, parabola, ellipse, hyperbola whose equations in standard forms
2 2
are respectively y =mx + c;x? + y? = a?;y? = dax; Z—2+ Z—Z =1 and

xZ y2=1

az b2

If an equation f(x,y) = 0 can be reduced to the above standard
forms the curve represented by the equation can easily be traced with
their known properties.

In this section we discuss the methods of tracing the curve whose
equations are given in terms of Cartesian coordinates, polar coordinates,
and parametric coordinates.

The aim of curve tracing is to find an approximate shape of the
curve. The knowledge of the nature and shape of the curves are useful
when we evaluate length, areas, volumes, surface areas etc of a bounding
curve.
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A: Tracing of curves f(x,y) = 0 (Cartesian Coordinates)

Suppose a curve is represented in terms of Cartesian coordinates
by the equation f(x,y) =0. The following points provide useful
information’s regarding the shape and nature of the curve.

I. Symmetry of the curve
(a) Symmetry about the x-axis:

A curve f(x,y) = 0is symmetric about the x-axis if f(x,—y) =
f&xy).

Example y? = 4ax; x? + y? = a?; y* + y? + x3 = 0 are curves which are
symmetric about the x-axis.
But x? + y? = ay is not symmetric about the x-axis.
(b) Symmetry about the y-axis

A curve f(x,y) = 0is symmetric about the y-axis if f(—x,y) =
).

Example x? = 4ay; x> + y? = a%;y = x* + x? + a are symmetric about
y-axis.

But x2 4+ y? = ax is not symmetric about the y-axis.

Note x? + y? = a? is symmetric about x-axis and y-axis. In this case the
equation involves even and only even powers of x as well as y.

(c) Symmetry about the liney = x.
If f(x,y) = f(y,x) then the curve is symmetric about the line y =

Example x? + y2 = a%;x3 + y® = 3axy; xy = ¢? are symmetric about
theliney = x.
(d) Symmetric about the origin. (Symmetric in opposite quadrants)

If f(—x,—y) = f(x,y) then the curve is symmetric about the
origin (symmetric in opposite quadrants).

Example x2 + y? = a?; xy = c¢? are symmetric about the origin.
x3 + y3 = 3axy; y? = x3 are not symmetric about the origin.
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Il. Points of intersection with the coordinate axes

To obtain the points where the curve f(x,y) = 0 intersects the x-
axis put y = 0 in the equation and solve for x. Similarly, to find the points
where the curve intersects the y-axis put x = 0 in the equation and solve
fory.
Example The curve x2 + y? = a? crosses the x-axis at (a, 0) and (—a, 0)
and crosses the y-axis at (0, a) and (0, —a).
The curve y? = 4ax passes through the origin.

I1l. Region in which the curve lies.
If the equation of the curve f(x,y) = 0 can be expressed in the
form y = g(x) we determine the values of x for which y is imaginary or y
is not defined. No portion of the curve lies in the corresponding region.
Similar information can be obtained if the equation of the curve
can be expressed in the form x = g(y).

Example The curve y%(a — x) = x3 can be written as = x /ﬁ Clearly y

is imaginary when x > a or x < 0. Hence the curve does not lie on the left
of the y-axis and to the right of the line x = a.

IV. Tangents to the curve
(a) Tangents at the origin

If the origin is found to be a point on the curve then the tangents
at the origin are obtained by equating to zero the lower degree terms
occurring in the equation.
Example y? = 4ax passes through the origin and lower degree term
occurring in it is 4ax which when equated to zero becomes 4ax = 0 (i.e.)
x = 0. Hence y-axis is the tangent to the parabola at the origin.
Also x3 + y3 = 3axy passes through the origin at whichx = 0andy =0
are the tangents.
For the curve a?y? = a?x? — x*, y = +x are the tangents at the origin.
(b) Tangents at any other point (h, k) other than the origin

Find % at (h, k) and it gives the slope of the tangent to the curve

at this point. This will be useful to decide the nature of the tangent -
whether parallel to the x-axis or y-axis or inclined tangent.
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V. Asymptotes
The concept of asymptotes described in the previous chapter will
be helpful to know about the asymptotes in tracing any curve.

(a) Asymptotes parallel to the x-axis.

These are obtained by equating to zero the coefficient of the
highest power of x.
Example (y + a)x? + x — 1 = 0 has an asymptote y = —a parallel to the
x-axis.

(b) Asymptotes parallel to the y-axis.

These are obtained by equating to zero the coefficients of the
power of y.
Example y?(4 — x?) = x3 — 1 has asymptotes 4 — x%2 = 0 (i.e) x = 2 and
x = —2 are two asymptotes parallel to the y-axis.

(c) Inclined asymptotes

Taking y = mx + c as an asymptote we can find m and c by
substituting y = mx + c in the equation and equating to zero the various
powers of x starting from the highest power.
Example For the curve x3 +y3 =3axy;x+y+a=0is an inclined
asymptote.

VI. Special Points

Points at which the function is maximum or minimum; the points
of inflexion; intervals in which the function is increasing or decreasing;
region of concavity and convexity; multiple points such as cusp, node,
conjugate points provide useful information’s in determining the shape of
the curve.

Having known all these information’s by inspection or
investigation we shall trace the curve.

B: Tracing a curve f(r, ) = 0 (polar coordinates)
To trace a curve given in terms of polar coordinates by the
equation f(r, 8) = 0 we investigate the following.
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I. Symmetry of the curve
(a) Symmetry about the initial line.

The curve f(r,0) = 0is symmetric about the initial line 8 = 0 if
f@r,=6) = f(r,0).
Exampler = a(1 + cos8); r = a(1 — cos 6); r = acos 26 are symmetric
about the initial line. However r = a(1 — sin ) is not symmetric about
the initial line.

(b) Symmetry about the pole
The curve is symmetric about the pole if f(—r,0) = f(r, 6).
Example 72 = a? cos 20 ;72 = a? sin 26 are symmetric about the pole.

(c) Symmetry about =

N3]

The curve f(r,8) = 0is symmetric about the line = g (y-axis) if

fr,m—0) =f(r,0).

Example r = a(1 + sin 6); r = a sin 36 are symmetric about = g

Il. Tangents at the pole.

We put r = 0 in the equation of the curve and solve the resulting
equation for 6. If there exists a real solution a for 8, then the curve passes
through the pole and the line 8 = « is a tangent to the curve at the pole.

Ill. Region in which the curves lies.

(i) If the maximum value of r is a, then the curve lies within the
circler = a.

(ii) If there exist values of 6 for which r? < 0 so that r becomes
imaginary then the curve does not exist for those values of 6.

Example r? = a? sin 20 does not exist if% <@ <m.

IV. Value of ¢.

The angle ¢ which a tangent at (r, &) makes with the initial line is

ao

found from the formula tan ¢ = .
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V. Asymptotes

If there is no finite value « for @ such that r —» oo, then the curve
f(r,8) = 0 has no asymptotes.
VL. Points on the curve

Giving different values for 8 we can get different points on the
curve which will be of use in tracing the curve and ascertain whether r
increases or decreases in the region.

C:Tracing a curve x = f(t),y = g(t) (Parametric equations)

(i) Suppose x = f(t),y = g(t) are parametric equations of a
curve where t is the parameter.

If it is possible to eliminate the parameter between the two
equations and get the Cartesian form of the curve we proceed as in the
case of Cartesian coordinates.

(i) If the parameter t cannot be easily eliminated

. d d dt
(a) FindZ2 =2 x £,
dx dt dx

(b) Give different values to the parametert and find,,y,j—z. This gives

different points on the curve and slopes of the tangents at these points.
(c) We plot the points and trace the curve.

Example 27
Trace the curve y? = ax® (semi cubical parabola)
Solution

The curve is symmetric about x-axis.

It passes through the origin.

It has a tangent y = 0 (x-axis) at (0,0).

The curve has no asymptotes.

Since y is imaginary when x < 0 no part of the curve lies to the
left of the y-axis.

The curve does not cut the axis except at the origin.

Since the x-axis is the tangent and the curve is symmetric about
the x-axis the two branches of the curve lie on either side of the tangent.
Hence origin is a cusp.

The form of the curve is as shown in the figure.

108
Differential and integral calculus



The curve is called semi cubical parabola.

Example 28
Trace the conic r = 2a cos 8 (circle)
Solution
The curve is symmetric about the initial line.
When, 8 = g r = 0. Hence the curve passes through the pole and
further 6 = g is the tangent at the pole.
We can prove = 9+%. When 6 = 0 we have r = 2a and =g.
Hence at (2a, 0) the tangent is perpendicular to the initial line.
Since |cos 8] < 1 we have r < 2a. Hence the whole portion of the
curve lies within the circle r = 2a.
Some points on the curve are given in the table.
6 0 /4 /2
r 2a V2 a 0
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L (2a,0)

The form of the curve is as shown in the figure.

Example 29
Trace the curve r = a(1 + cos 8) where a > 0 (cardioid).
Solution

We note the following from the equation of the given curve.

The curve is symmetric about the initial line.

When 6 =  we have r = 0. Hence the curve passes through the
pole and further 6 = m is the tangent at the pole.

Let ¢ be the angle made by the tangent at (r, 8) with the initial
line.

dae 7] 6 6
NOWItan(b:r—:‘l(lLf)s):_cot(_)=tan(E+_)‘
dar —asinf 2 2 2

0= g+§. Hence when 8 = 0,¢ = gandr = 2a.

Thus the tangent at (2a, 0) is perpendicular to the initial line.

Since the maximum value of r is 2a, no portion of the curve lies to
the right of the tangent at (2a,0) and hence the curve lies within the
circler = 2a.

The following table gives a set of points lying on the curve.

0 /4 /2 s —m/2 /4
2a a(1+\/—1§) @ 0 “ a(1+\/—1§)
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When 6 increases from 0 to 27, r is positive and it decreases from
2ato0.
The form of the curve is as shown in the figure and it is a cardioid.

3.6 Taylor’s series expansion

Suppose that a function f(x) has derivatives of all orders in some
neighbourhood of the point a. Then f(x) has the following Taylor's
development with Lagrange’s form of remainder h.

fla+h) =@ +hf@+5f @+ +

(n-1)!
%f(")(a +6h), where 0 <8 < 1. The term R, = Z—Tf(")(a + 6h), is

called the Remainder after n terms (Lagrange’s form). If lim R,, = 0, then

n—-oo

fO (@) +

f(x) has Taylor’s series expansion at a and is given by
2 n
fla+h)=f(@+hf'@+2f"(@++=fM(a)+ -

If we puta + h = x, so thath = x — a, then the Taylor's series
expansion of f(x) at a takes the form

f=fl@+x-a)f'(a+ %f”(a) +o
+(X;_‘|1>”f(n)(a) + o
1) |
If we puta = 0in (1), we get
f@) = £O) +x f/(0) + 2 £(0) + w+++ 2 FI(0) + - 2

and (2) is called the Maclaurin’s series expansion of f(x).
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Note The Taylor's series converges to f(x) if lim R,, = 0. We now give an
n—oo

example of a function f whose Taylor's series does not converge to f.
Consider the function f defined by

1

_le 2 ifx+0
e {0 ifx=0

Clearly f has derivatives of all orders at every point x # 0 and f ™ (x) =
1
B, G) e *2,x # 0 where P, G) is a polynomial in i
We shall now show that for all n, f ™ (0) = 0.
R)—£(0
£1(0) = f( )- f( )

= liml<e hz) =0.
h—-0h
We assume that f ™~ (0) = 0 and prove f™(0) = 0.

(n-1) _r(n-1)
) s f (W-f (0)
f0) = hm N .

= lim= P,_1 (h) e_hiz = 0.

h-0h
Now, Taylor’s series off around O is given by

FQO) +xf'(0) += f”(0)+ + L pnmn(0)
This series has sum zero (by [1]).
=~ The sum of the Taylor's series of f(x) at any point x # 0 is different from

f).

n-1)!

Taylor’s series expansion of some standard functions
Result 1
x  x%  x3
=1+>+>+> 4
1! 2! 3!
Proof
Let f(x) = e*.Then f'(x) = e*.
Hence f(0) = 1and f'(0) = 1.
In general, f™(0) = 1 for each n.
2 3
X = 1+£+x_+x_+
1 20 3l

The above formula is valid for all x € R.
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Result 2
. x3 x5
sinx =x——+——"
ETRRET
Proof
let f(x)=sinx . Then f'(x)=cosx,f"(x)=—sinx,f® ()=
—COSX, eueeen e
-1 ; sinx if niseven
In general f™ (x) = {( )(n—l) 4
(=1)"2 cosx if nisodd

- 0 if nis even
o n 0 = n-1)
f0 {(— ) 2z ifnisodd

3 xS

. X
sInX =Xx——r+ o

The above formula is valid for all x € R.

Result 3
log(1 + x) =x—x2—2+xs—3—--- where -1 <x < 1.
Proof
Let f(x) = log(l +x) ~ f(0) =0.
f'(x) = Tox ~ f'(0) =1.
fx) = m ~ f"(0) = -1.
3 (-1)?2! . £(3 _ 2
fO@ =522 “ fO(0) = (~1)? 21,
oy = 0D £ M) = (D™ - DL

2 3
log(1+x)=x—x?+"?_...

This formula is valid for |x| < 1.

Example 30
Using Maclaurin’s theorem expand e”* sec x as a power of x upto the term
containing x3.
Solution
Let f(x) = e* secx.
~ f(0) =1.
(1
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f'(x) = e*secx (1 + tanx).
A f(0) = 1.
(2)
f'(x) =e*[sec®x + (1+ tanx)?secx].
=e*secx (2sec’x + 2tanx).
L f1(0) = 2.
(3)
F®(x) =2 e*(3sec? xtanx + 2 sec® x + sec x tan x + tan? x sec x.
@) = 4.
(4)
By Maclaurin’s Theorem,
e*secx =1 +x+’;—7(2) +§(4) + -

=T+x+a?+2x% 4o

Example 31
Expand log sin x in powers of (x — 3).
Solution
Let f(x) = logsinx
Now f(x) = logsinx f(3) =logsin 3.
’ _ Cosx _ ’ _
f'(x) = oo, = cotx f'(3) = cot3.
f"(x) = —cosec? x f""(3) = —cosec? 3.
f"'(x) = —2 cosecx (— cosecx cotx)
= 2 cosec? x cotx """ (3) = 2 cosec? 3 cot 3.
a2
~ logsinx = logsin3 + (x — 3) cot3 — %cosec2 3+
—_2)3
%cosec2 3cot3 + -
Example 32
Expand e* in ascending powers of (x — 1).
Solution
Let f(x) = e* f(H)=e
frx) =e* ff)=e
f'x) =e* ff)=e

Differential and integral calculus
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~1)2 _1)3
ex:e[1+(x_1)+ﬂ+ﬂ+...]_
2! 3!

Example 33

Use Taylor's Theorem to express the polynomial 2x3 + 7x% + x — 6 in
powers of (x — 2).

Solution

Let f(x) =2x3+7x2+x—6

Now f(x) =2x3+7x>+x—6 f(2)=16+28+2—-6=40

fl(x) =6x*+14x+1 f'(2)=24+28+1=53
f"(x) =12x+ 14 f"(2) =24+14 =138

flll(x) — 12 flll(z) — 12

2 2x3 4+ 7x2+x—6=40+53(x —2) + 19(x — 2)? + 2(x — 2)3.
Example 34

Find the expansion of log [%

Solution

log ’i—i = %[log(l + x) — log(1 — x)].

Exercise 7
Prove the following

2 4
1.cosx = 1—%+%—---foraIIxER.

2.log(a + x) =loga +§—%Z—z+ - if x| < a.
23x% 2546
41 6!
4, Prove that 2+x?2—-3x°+7x°=7+4+29(x—1)+76(x —1)? +

110(x — 1)% 4+ 90(x — 1)* + 39(x — 1) + 7(x — 1)°.

3.sin’x = x% — — ...forallx € R.

115
Differential and integral calculus



UNIT-IV

EVALUATION OF INTEGRALS
4.0 Introduction

Let f:R - R be a continuous function. A function F:R — R is
called a primitive of f(x) if F'(x) = f(x) forall x € R.

We note that if F(x) is a primitive for f(x) then F(x) + c where
any arbitrary constant is also a primitive for f (x).

Now, let F'(x) = f(x) and let f(x) be continuous. Then by
theorems f;f(x)dx =F(x)—F(a)

(1)
and =~ (f7 f(x)dx) = F'(x) = f(x)

(2)

Equations (1) and (2) show that the process of integration and
differentiation are inverse to each other for functions with continuous
derivative. Also from (1), we see that the evaluation of the integral
f;f(x)dx requires acknowledge of a primitive of f(x).

If F(x) is a primitive of f(x) we write [ f(x)dx = F(x) and
[ f(x)dx is called an indefinite integral.

Thus evaluation of this indefinite integral is just determining a
primitive of f(x) when it exists.

In this chapter we develop various methods of evaluating
indefinite integrals of various types of functions.

4.1 Some simple integrals
Consider [ x? dx.

3
We note that ;—x (x? + c) = x2 where c is any arbitrary constant.
3
x? + cis a primitive of x2.
3

o [ x?dx =x?+c.
Note Hereafter in evaluating indefinite integrals we shall take the constant
¢ to be understood after the primitive.

We give below a list of standard integrals which are immediate

consequence of the corresponding formulae for differentiation.
1. [ k dx = kx.
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n+1
2. [x"dx ==—whenn # —1.
n+1

3f(§) dx =logx.

4. [e* dx = e*.
x _a
5 a dx =
6. [sinx dx = —cosx.

7. cosx dx = sinx.

8. [sec?x dx = tanx.

9. [ cosec? x dx = —cotx.

10. [ secx tanx dx = secx.

11. f cosecx cotx dx = — cosecx.

dax — in-1
12.f—m sin™! x.

dx -1
13. [ =tan"'x

1y,

dx
14. fm = secC
15. [ sinhx dx = coshx.
16. [ coshx dx = sinhx.

dx R -1 _ 2

17. f—(sz) = sinh™' x = log [x +(x2 + 1)].
dx —

18.fm =cosh™lx = log[x + 4 (x2 - 1)].

Note (i) [a f(x)dx =a [ f(x)dx where a € R.
(i) [[f(x) £ g()] dx = [ fx)dx + [ g(x)dx.

Example 1

Evaluate ] = [ [e¥ + 8 cosx — \/ﬁ+ 8x2] dx.
Solution

I=[e*dx+8fcosx dx—4f\/%+8fx2dx.

. P 8
= e* + 8sinx — 4 sin 1x+§x3.

Example 2

dx

Evaluate = [ ——.
mnx
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Solution
_ 1-sinx
I'= f(coszx)dx

= [(sec? x — secx tan x)dx.

= tanx — secx.

Exercise 1

Evaluate the following integrals

1.ax5 + b\x + csinx + k e*. ZW

x3
1 cos? x 3 4

: =X Sef -2yt

1—cosx 1-sinx X 1+x
Answers

1 2b -
1.gax6+?x3/2—ccosx+kex 2.—13logx — 4x — 12x7*
3. -(cotx + cosecx) 4.x —cosx

5.e* —logx®+4tan"'x

4.2 Method of Substitution

A standard method of evaluating a given integral is to reduce it to
a standard formula listed in 4.1 by a simple substitution. In many cases the
form of the function helps us to find or guess a suitable substitution.
However in general, finding a suitable substitution for evaluating an
integral need experience and practice.

Some standard integrals

1. [ —— = sin"1(x/a)
(a2-x2)

Proof
Put x = asin8.Hencedx = acos 0 db.
dx acosB0do
a f\/(az—xz) - f acosf fd@ =90
= sin"1(x/a).

1,  _

2. [ 2 2+ ; =_tan"'(x/a)

Proof

Putx = atan 6. Hence dx = asec? 0 df.

. fa2+x2 _fasec 6do —fd@ _1

a?sec2
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= %tan‘l(x/a).

3. & —sinh~l(x/a)

(a2+x

T‘
N
—

Proof
Put x = a sinh 8. Hence dx = a cosh 8 d6.

dx acosh6d6
'.f\/(a2+x2)_f acosh@ _fde_e'
= sinh™!(x/a).

4, & = cosh™'(x/a)

Proof
Put x = a cosh 6.Hence dx = asinh 8 d6f.

dx asinh 6d6
“f\/(xz—az)_f asinh 6 —fd@—@.
= cosh™!(x/a).

dx 1 x—-a
5. o = 208 (1)
Proof

1 A LB

f dx 1 f dx 1 dx
x2-a2  2aY x-a 2 x+a
_ 1 lo (x—a)
" 2a g x+a/’
dx 1 a+x
6. = Liog(t2)
faz—xz 2a g a-x
Proof
1 B
Let - =——+t—.
a?-x a-x  a+x
1 1
Then A = —and = —.
2a 2a
. f dx i dx i dx
“az—x2 T 207 a-x " 207 a+x
1 lo (a—x)
- 2a g a+x)’

7. [J(@? —x2) dx = %x (a% — x2) + %az sin"!(x/a)
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Proof
Putx = asinf.Hencedx = acos 8 do.

o [y/(a? —x%) dx = a* [ cos? 0 db.
1
= Eaz J(1 + cos 20)d6.
= g2 [9 + =sin 29].
2 2

=%a2[9 + sin @ cos 6]

= %az sin~(x/a) + %az(x/a)w/[l — (x/a)?]

= %x (a? — x2) +%a2 sin~1(x/a).

8. [ (a? +x?)dx = %x (a? + x2) + %az sinh~1(x/a)
Proof

Put x = asinh 6. Hence dx = acosh 8 d6.

~ [/ (@ + x?) dx = a? [ cosh? 6 d#.

= %az J(1 + cosh 26)d6.
=1q2 [9 + Lsinh 29].

2 2
= %az [6 + sinh 6 cosh 0]

= %xw/(a2 +x2) + %az sinh™1(x/a).

9. [/(x2—a?)dx = %x,/ (x2 —a?) — %az cosh™1(x/a)

Proof
Put x = acosh 8.Hence dx = asinh 8 df.

o [/ (x? —a?) dx = a* [ sinh? 6 d6.
= %az f(cosh 26 — 1)d6.
=2q? [isinh 20 — 9].
2" 12

= %x,/(x2 —a?) — %az cosh™(x/a).

10. [ tan x dx = log(sec x)
Proof

ftanx dx = [

sinx

Ccosx

Differential and integral calculus
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d(cosx)

= — [——— = —log(cos x)

CcCosx
= log(sec x).

11. [ cotx dx = log(sin x)
Proof is similar to the previous problem.

12. [ secx dx = log(sec x + tan x)

Proof
fSECX dx = fsecx(secx+tanx)
secx+tanx
_ fd(secx+tanx)
- secx+tanx
= log(sec x + tan x).
13. [ cosec x dx = —log(cosec x + cot x)

Proof is similar to the previous problem.

Example 3
sin+v/x

ﬁdx

Evaluate [

Solution
Puty = x

=9
dy—zﬁ

Hence [ Si:}f

dx =2 [siny dy
= —2cosy = —2cosVx.

Example 4

Evaluate [ x e*” dx.
Solution

[xe* dx = %fexz d(x?).

1 2
:—ex
2

Example 5

x dx
Evaluate [ —
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Solution

Puty = x%. Hence dy = 2x dx.

d
N e

=Etan y

1+y?

= %tan‘l(xz).

Example 6
Evaluate [ a*” x dx.
Solution

faxz xdx = %f a® dt (putting x? = t)

1 e
— Efetlogadt —

2
ax

~ 2loga’

Example 7

Prove thatf = log(

Solution

fl dx _fl e * dx
0 ex4+1  JO 142X

1d(e™™)
0 1+e—*

= log (;72).

Exercise 2

Integrate the following functions with respect to x.

1. x2% cos(x?)

X
T 1+x2

CosXx

7. J(1+sin? x)

1

10. J(9+25 x2)

2e

1+e

tloga

2loga

)

—[log(1 + e™)]5 =log2 —log(1 + 1/e)

1

“xlogx

" (5x2-3)"7

X

x+1

" x2+2x+3

"49x2+16

1

1

sin” - x

e

e

“Ja-e20)
12.V25 + x2
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Answers

1.§sin(x3) 2.1log(log x) 3. % (log x)*
4.%log(1 +x2) 5.$(Sx2 - 3)8 6.%(sin‘1 x)?

7.sinh™!(sin x) or log[sinx + 1+ sin?x

8.%log(x2 +2x+3) 9.sin"1(e*)

10. g sinh~1(5x/3) 1 1.% tan~1(7x/4)

1

12.2x V25 + x2 + zz—ssinh‘l(x/S).

4.3 Integration of Rational functions
In this section we discuss various methods of evaluation [ R(x)dx
where R(x) denotes the ratio of two polynomials in x.

dx
Type 1 fax2+bx+c
We note thatax? + bx +c=a (x2 + Zx + 2)
b\2 c b2
= a[(“z) +(;‘m)]
2 _pn2
=a[(x+i) +/12] where 12 = + 22
2a 4a

. . 1 du _ b .
~ The given integral reduces to me where u = x + p” and this

integral can be easily evaluated.
Type2 [ -

xZ+bx+c

Letlx + m = A(Qax + b) + B

Ix+m

ing li =1 = _b
Equating like terms we get A = o~ and B = (m 5 )

a
d(ax?+bx+c) i (m lb)f dx

ax2+bx+c ax2+bx+c

. . !
~ The given integral reduces to Zf P

which can be evaluated by using type 1.
Note

1. A rational function R(x) is called a proper rational function if
the degree of the numerator is smaller than the degree of the
denominator. In some cases a proper rational function R(x) can be
resolved into partial fractions and [ R(x)dx can be evaluated using types
1or2.
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2. If R(x) is not a proper rational function then R(x) can be
expressed as a sum of a polynomial and a proper rational function by

ordinary division.

We illustrate these methods in the following problems.

Example 8

Evaluate fm

Solution

dx dx
fx2—6x+5 - f(x—3)2—22

1 x—3-2
= —lo ( )
x—3+2

=118 ()

Example 9
Evaluate fm
Solution
f dx _ lf dx
3x2-2x+2 3 x2_§x+§
_ lf dx
T3 (x_1)2+3_1
3 3 9
2
37 (2= +(/573)°
1
_ 3 1 3
3«/_tarl (\/—/3>
1 g (3x-1
= gtan~ (32)
Example 10

2x—1
Evaluate [ ———
X=X

Solution
let2x —1=A4A(10x—1)+ B

Equating the coefficients of x and constant terms we get A = %and B =

4

5

2x-1 1 10x—-1 4 dx
P N G - M
5x2—x+2 59 5x2—x+2 5Y 5x2—x+2
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dx
2_1,.,2
x2—ox+g

dx

(e55) +(/70)"

1
= %log(Sx2 —x+2)— 4x10 tan_1< ¥ 1o )

=§log(5x2 -x+2) —%f

_1 2 _ _4
= 5log(Sx x+2) "

25%+/39 J(39/10)
_ l 2 _ _ 8 -1 10x—1
= 5log(Sx x+2) sastan ( N )
Example 11
X
Evaluate ] = fm dx
Solution
x A B
Let m dx = —a + e
WegetA =——andB = L
a-b b—a
a dx b dx

“a-b? x-a b-aY x-b

= a—ib [alog(x —a) — blog(x — b)]

-1 [(x‘a)a]
~ a-b (x-b)PI"
Example 12
X27
Evaluate [ —— dx
Solution
%27 _ 13 4x13
xl4+4 x14+4
x27 13 x13
fx14+4 dx = [x13dx — 4fx14+4 dx
A, (x1* +4)
T 108
_x* 2 14
=0 7log(x +4).

Exercise 3

Integrate the following functions with respect to x.
1 2x+1 1
" x24+4x+10 " x2421x+3 T+ (x+2)
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x—8 2 X

" x3-4x2+4x " (14x2)(1-x) 6. x3-1
x241 x5

T (x2-1)(2x+1) "x3-1
9.show that [ -2 = 1log2 +

' 0 1+x3 3 g 33
Answers

1 g (%42 2 20 2x+21—V429
1. ztan (JE) 2.log(x* + 21x + 3) —\/mlog (—2x+21+m)

x+1 3 (x=2)2

5.-log(1 —x) + %log(x2 +1)+tan"1x

1 2 _ _1 L tan—1 (222
6. 6log(x x+1) 3 log(x + 1) + \Etan ( N )
7.§log(x —1) +log(x+1) — %log(Zx +1)

8.§[x3 + log(x® — 1)]

4.4 Integration of Irrational functions

dx
T 1| ——
ype f\/ axZ+bx+c

As in type 1 of 4.3 the integral can be reduced to one of the forms

d d d . . .
[ == or [ == or [ == which are simple integrals.
Vuz+a2 Juz-22 Jaz—u2?

Ix+m

Type 2 f Vax2+bx+c
As in type 2 of 4.3 the given integral becomesif

dx
d(ax?+bx+c)
ax2+bx+c

(m - ﬁ) fd—xwhich can be evaluated using type 1.

2a ax2+bx+c

Type 3 [ Vax? + bx + c dx
This integral can be reduced to one of the forms [ Vu2 — A2 du or

V22 —u? du or [Vu? + 2% du which can be evaluated by a suitable
substitution.

Type 4 [(Ix + m)Vax? + bx + c dx

Letlx + m = A(2ax + b) + B.
1 b

~ A —zandB = (m—z).

Hence the given integral reduces to if\/axz + bx + ¢ d(ax?® + bx +

o)+ (m - %) [Vax? + bx + ¢ dx which can be evaluated.
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dx
Type5 | ————
yp f (x—k)v ax?+bx+c

This can be reduced to the form [ ———— by the substitution

VA x2+Bx+
k=1

t
dx
Type 6 f (px2+q)\/ axZ+bx+c
This can be reduced to one of the types discussed earlier by the

substitution = %

Type 7 [ (x—a)(b—x)dx; fm ) ( ) dx can be
evaluated by using the substitution x = a sin? 6 + b cos? 6.
We illustrate theses methods in the following problems.

Example 13
dx
Evaluate f\/ﬁ
Solution
dx _ dx
f\/2+3x—2x2 B f\/—z(xz—%x—l)
1 dx
~E T
-]
1 d
el =
[ -]
1 1 x—2
NS HES  alr
7 Sin Y )
_ 1 . o_q(4x-3
B ( 5 )
Example 14

Evaluate [ (3 Zxx) dx

Solution

3-2x _ 3-2x

J ( ) x_f\/(l —x)(3-2%)
f 3-2x

J(3-5x—2x2)
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Let3 —2x =A(4x—-5)+B
Equating the like terms we get A = — % and B = %

f 3—-2x _ f (4x 5) x +lf dx
V2x2-5x+3 V2x2-5x+3 27 /2x2-5x+3
- _ 2 _ L dax
V2x2 —5x +3+ zﬁf

2 2
(3 -]
= —V2x%2—-5x+3+ %cosh‘l(llx —-5).

Example 15
Evaluate foz (i—z) dx
Solution
2+x 2 24+x
I'= f ( ) 0 2+ (-0 dx
_ 2 2+x
—Jo 4—x2
_ (2 2ax 2 xdx
N 4—x2 fo 4—x2
2 2
— so—1 (X _ Y
= [2sin ()], - V@& =3,
=m+2.
Example 16
Evaluate [(3x +2) Vx2 + x + 1 dx
Solution
let(3x+2) =A=(x2+x+1)+B
=AQ2x+1)+B.

Comparing like terms we get A =§and=%.
f(3x+2)Vx2+x+1dx=f[z(2x+1)+%]\/x2+x+1dx
=Sf(2x+1)\/x2+x+1dx+§f\/x2+x+1dx

3 (2 +x+1) 3/2 V32
36y e+ (2o
— (P x4 1) +§[(x F D)V TR+ Lsinn (

/)
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=(x%+x+ 1)3/2 [(2x+1)m+ sinh- (2x+1)]

Example 17
dx
Evaluate | = | ——————
vald f(xz—l)\/x2+1
Solution
Put = = . Hence dx = —lz dt.
t t
dx dt/t?

Now,[ = | —F——=— | ——F——.

w f(xz_l) [x2+1 f(l/tz—l)‘/(l/t2+1)

_ f tdt
B (1-t2)1+¢2°
Now put 1 + t? = y2. Hence t dt = y dy.

_ [ _yady
Hencel = e yz)y
=I5 (f)
_ 1 y—V2
_zﬁlog(yh/f)
-1 V1+t2—/2
2V2 & V1+t2442
LO \/(1+x2)—\/§x]
vz g Ja+x2)+v2x]
Exercise 4

Integrate the following with respect to x.
1 2ax+b x+3

1. J(5=7x-3x2) " J(ax?+bx+c) 3. V(B+4x—4x2)
x—1 2
4, (ZH) 5./Bx% +4x + 1)
6— L
‘A+x2)(xZ+x+1)
7 8 1
" (2x2+3)/(3x2-4) " x2\/(4+x2)
9. Evaluate fl/z%
Answers
i =1 6x+7 ’\/27
1.\/§sm (\/W) 2.2vax*+bx+c

— 23 ¥ 4x — 4x7 + Lsin™? (zx_l)
4 4 2
1 5 4
1 2 — 2 _ 5 -1
42v2x +x—-3 4ﬁcosh (

x+1)
5
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5.(32) V3xZ + 4x + 1+ S cosh™ (3x +2)
1 VI7x+V3V3x2-4

_Lian? Vl—xz) Vi7x4V3y3x2—4
6.—Ftan (ﬁx 737 98 | i

Va+x? 3, 011[ . _q(2 o1 (1
- 0.5 +5 s () s ()]

4.5 Integration of Trigonometric Functions
In general an integral of the form [ R(sinx,cosx)dx can be

. . 2t -
evaluated by putting t = tan(x/2) so thatsinx = T2 CosX = — and
_ 24t
T4z’

However there are some special methods if the functions

involved are simple.

asinx+b cos x

For example [ dx can be evaluated by putting asinx +

lsinx+mcosx

bcosx = A;—x(lsinx+mcosx) + B(lsinx + mcos x).

These methods are illustrated in the following problems.

Example 18
2sinx+cosx
Evaluate ] = [————=
3sinx+cosx
Solution

Let 2sinx + cosx =A%(3sinx+ cosx) + B(3sinx + cos x)

= A(3cosx —sinx) + B(3sinx + cos x)

Equating like termswe get3A+ B =1and-A+ 3B =2
7

Solvingwe get A = %and B = o
— if3cosx—sinx dx +lfdx
10 10

3sinx—cosx

1 . 7
= Elog(3 sinx + cos x) +t X

Example 19

/2 dx _1
Show that fO m =5 lOg 6
Solution

Putt = tan(x/2)
dt = %secz(x/Z) dx
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2dt

Ldx = —

1+t2
fﬂ,’/z dx _ fl 2dt
0  3cosx+4sinx

0 (1+t2)[ ( +tz> 4(%)]

= 2fO 3— 3t2+8t
%fl ] dt

0 m 5 4\ 11
(3% () % ()1os(253)

0
— |10 2
- [5 log3 tL
1 2 1
= [1og2 ~1og;
1
= Elog 6.
Example 20
dx
Evaluate I = f 1+a? cos2 x+b2? sin? x
Solution

sz dx

1+a? cos? x+b? sin? x
_ sec? xdx
- f secZ x+a?+b2%tan2 x
Put t = tanx. Hence dt = sec? x dx.

_.sz dx

(1+t2)+a?+b?t?

_ f dt
1+b?)t2+a2+1"

=1 at
T 14p2 J

2 aZen)\

t +< (b2+1)>

1 b2+1 -1 b2+1

— [ JED e ()¢

Exercise 5

Integrate the following

7 sinx 5cosx 1
"5 cosx+2sinx "2 cosx+sinx "1-3sinx
sinx cosx 1
" 5+4sinx '5-3cosx "1+3cosZx
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1
"3cos? x+11sin? x
Answers

8.Show that [7/4 2 _ — 2

/4 2cos2x+1  3v3

1.§x - %log(S cosx + 2sinx) 2.2x +log(2 cosx + sinx)

3. %log (M—:;Z—Q 4. %x — %tam‘1 E (5 tan (g) + 4)]

Sian-1 A\ il Lian-1]2

S.Gtan [Ztan(z)] 3x6.2ta1n [Ztanx]
1 (3/11)—-tanx

7. zdﬁlog («/(3/11)+tan x)

4.6 Evaluation of Definite Integrals
1.fabf(x)dx = - fbaf(x)dx
2. fff(x)dx = facf(x)dx + fcbf(x)dx

We now prove some more properties of definite integrals.

3., fx)dx = {2 Jo F0dx if f@is even
e 0 if f(x) is odd
Proof
[° f@odx = [° fG)dx + [ f(x)dx (by2)
=- f;f(—y)dy + foaf(x)dx (by putting x = —y)
= [ F=y)dy + [} f()dx
(1)

Case (i) Let f(x) be an even function

 fO0) = f(=2)

From (1) we get f_aaf(x)dx = foaf(y)dy + foaf(x)dx
=2 foaf(x)dx.

Case (ii) Let f(x) be an odd function

~ ) =—f(=x)

From (1) we get [* f(x)dx = — [' f()dy + [ f(x)dx = 0.

4. foaf(x)dx = foaf(a—x)dx

Proof

Puttinga — x = y in the right hand side integral we get the required
result.
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5. fozaf(x)dx = {

Proof

S fGdx = [ fFOdx + [[“ f)dx  (by2)
= [, f)dx — fff(Za —y)dy (puttingy = 2a — x)

= [ f)dx + [ f(2a — x)dx
Case (i) Let f(2a — x) = f(x).

Hence from (1) we get fozaf(x)dx = foaf(x)dx + foaf(x)dx
=2 foaf(x)dx.

Case (ii) Let f(2a — x) = —f(x).

Again from (1) we get fozaf(x)dx = foaf(x)dx - foaf(x)dx =0.

Example 21
Evaluate I = |

0 1+cos?x

m xsinx

Solution

m xsinx
I= dx
fO 1+cos? x

(1
_ m (m—x) sin(m—x)
Also I = fO 1+cos?(m—x) dx
_ (m(m—-x)sinx
I'= fO 1+cos? x

(2)

Adding (1) and (2), 2I = f(:T 1:::;;;
Put cos x = y.Hence sinx dx = —dy.
_ -1 dy _ 1 ady _ 1.1
Now, 2 = — [, o nf_11+y2 = n[tan~t y]t;
= n(m/2).
s = n_Z .
4
Example 22
m/2 sin?x
Evaluate I = fO m

2 [ f@)dx if f(2a—x) = f(x)
0 if f(2a—x) = —f(x)

Differential and integral calculus
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Solution
02
[ = fn/z sin“ x dx (1)

0  sinx+cosx

n

2 in2(T_ )
J§ sin (2 x

sin(z—x)+cos(z—x)
2 2

~ Adding (1) and (2), 2I = fn/z -

0  cosx+sinx

Put t = tan(x/2). Hence dt = %secz(x/z) dx
2dt

1+t2

/2 dx
Now I = _—
fO sinx+cos x

1 2dt

Also, I = dx

o dx =

= 1-t2
1+t2)|[=5+—
( )[1+t2 14t2

=2 fO 1- t2+2t

1 dt
=2 —=
Js (V2)*=(t-1)2

= [2() 108 (222)].
= L [tog 1 - tog (2]
= Liog(Z)

oI = %log (g:)

Example 23

Evaluate | = f0”/410g(1 + tan ) do.

Solution

I = f”“log(l +tan@) do.

Also, I = fo/ log[1 + tan(w/4 — 8)] dO
= f0”/410g (1 += tane) de.

1+t

_ n/4 2
- f (1+tan 9) a6
ol = f”M log2 do — fn/ log(1 + tan @) do

=fn/410g2 o — 1.
2= [ log2 d6 = log2[617/"
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= glog 2.

1= glog 2.
Exercise 6

/2 Vsinx —
1. Prove that [, md’c =

NS

16
15

2. Prove that fozx 2-x)dx =

3. Prove that f(fx sin® x dx = 2?"

2

T x T
4. Prove that fO mdx = m

5. Prove that [/? —* qx = %log(\/f +1)

0  sinx+cosx

4.7 Integration by Parts

Theorem 1 (Integration by parts)

Let u and v be differentiable functions of x. Then [u dv = uwv — [ v du.
Proof

dv du
—+v—.
dx dx

We know that% (uv) =u
Integrating we get uv = fuZ—Z dx + va—z dx

=fudv+ [vdu
s~ fudv=uv— [vdu.
Note The method of evaluating a given integral by using the above
theorem is called integration by parts. In applying this method we must
choose u and v carefully so that the resulting integral is simpler than the
given integral.

Theorem 2 (Bernoulli’s formula)
Let u and v be differentiable functions x. Suppose there exists a positive
integer n such that u™ = 0 then

fudv=uv—uv, +u"vy, — - (=1)"uMy, where v; =
[vdx;v, = [vidx; ...
Proof
fudv=uwv— [vdu (bytheorem 1)
=uv— [u d(vy)

=uv—u'v, + [v, du’
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=uv—u'vy + [u'd(v,)
=uv—u'vy +u'v, — [v, du”
Proceeding like this we get the required formula.

Example 24
d?v dv du d?u
Prove that [u_— dx =u_—v_—+ [v_— dx
Solution
a“v d (dv
Juls de = fug (5)dx
dv dv . .
=u- ) du (by integration by parts)
A
T Tax dx dx
dx dx
dv du d?u
=ug = v - Tvis &
2
R gy
dx dx dx
Example 25
Evaluate [ x e¥dx
Solution

[xe*dx = [xd(e¥)
=xe*— [e*dx
=xe*—e*
=e*(x—1)

Example 26

xsin™lx
Evaluate [ dx

V(1-x2)

Solution
_ _ 2)| = X
We notethatd[ V(1 —=x3?) N
xsin~1x -
f\/?l——xz) dx = [sin!x d[—w/(l—xz)]
=—J(1 —x2)sin"tx + [dx
=x—+(1—x2)sin"tx
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Example 27
Prove that f;m Osec’ db = i(n —2log?2).

Solution
[Osec?0 do = [0 d(tan8)
=0tand — [tanf dO = O tan @ — logsec O

fon/405ec2 6 d6 = [6tan @ — log sec G]g/4
T T 1
—Z—log\/i—z—glogZ
=%(7T—210g2).

Example 28
e (a cos bx+b sin bx)
a?+b?

Prove that [ e®* cos bx dx =

Solution
Let] = [ e cos bx dx

~ I = [ cosbx d(?)

e b .
=—-cosbx + ~ [ e®sinbx dx

eax b ax
=-—cosbx + —[
a a

e . b
—sinbx — = [ e™ cos bx dx]
a a
e b . b?
=—cosbx + e sinbx — (—2)1
a a a

b? coshx . b .
1(1 +—2) =e? [— +—sin bx].
a a a
e (a cos bx+b sin bx)
a?+b2

.'.I:

e%*(a cos bx—b sin bx)

Note Similarly, [ e** sin bx dx =

a?+b?
Exercise 7
Integrate the following with respect to x.
ax+b logx -1
.(px+q)e 2 3.tan" (V)

2 1 X e*(x+1)
4.xcos“x 5.sin (x+1) 122
Answers

eax+b x 1 1
1.— (apx + aq — p) 2.—logx — og(x +1)
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3.(x + 1) tan ' vVx — Vx 4.%x2+ixsin2x+§c052x

5.xsin™! (L) —Vx +tan"t/x 6.
' x+1 T x42

4.8 Reduction formulae
. Establish a reduction formulae for [ x"e%* dx wheren € N.
Proof

= [x"e% dx

() < ()< Q) e

Zﬁ_(z)ln—l

a a

The reduction formula for I, is I,, = xnzax - (ﬁ) Ih_q.

ax

The ultimate integralis I, = [ % dx = ET

2. Reduction formula for I, = [ x" cos ax dx wheren € N.
Proof
Letl, = [x™cosax dx
sin ax sin ax E -1 .
= "d( ) x™ ( ) (a)fx" sinax dx
_ sinax\ cos ax -1, n1 -2
—x( ) ()[( )" +—[x" cosaxdx]
= (—x S;" ax) - (:—2) x™ ! cosax — —"(’;” Iy
The ultimate integral depends on n being odd or even.

Casei. nis odd. Then the ultimate integral reduces to

x sin ax

- - — Xl
= [xcosaxdx = —[sinax dx

xsinax | cosax
a a
Case ii. n is even. Then the ultimate integral reduces to
sinax

Iy = [ cosax dx =

3. Reduction formula I,, = [ sin™ x dx.(n € N) &find fon/z sin™ x dx
Proof
I, = [sin" x dx
I, = [sin" 1 xsinxdx = [sin® 1 x d(— cosx)
= —sin" xcosx + (n— 1) [ sin" % x cos® x dx
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= —sin"*xcosx + (n—1) [sin® % x (1 — sin? x)dx

=—sin"txcosx+(n—1) [sin"2xdx —(n—1) [sin" xdx

ol =—sin"lxcosx + (n— DI,_, —(n— DI,
anl, =—sin"txcosx + (n— 1I,_,
I, = |sinx dx if nisodd
The ultimate integral is = 1=/ . f .
Iy = [dx if niseven
B {— cosx if nisodd
T lx if niseven
sin® ! x cosx n-1
Now I, = — T—X%y (B0) )
/2 . _[_sin™'xcosx /2 n-1\ (/2 . 53
Jo " sin xdx—[—n ]0 +(n)f0 sin" % x dx

= (nT_l) (n—_3) v Uy, Where U, is the
integral which depends upon n being odd or even.
Case (i) If nis even U, = f”/z dx = [x]g/2 =m/2.

0
Case (ii) If nis odd U; = f;/z sinx dx = [—cos x]’g/2 =1

| =

T

fn/z sin® x d = (nT_l) (:—:z) w3 (;) if nis even
’ (n__l) (n__g) ---2(1) if nisodd

n n-2

ultimate

Note Similarly we can establish a reduction formula for [ cos™ x dx and

hence evaluate f;/z cos™ x dx by means of the formula given below.

IfI, = [ cos™x dxthennl, = cos™ 1xsinx + (n — 1)I,_,

fn/z cos™ x d = (nT_l) (:—:z) %(g) if niseven
’ (n__l) (n__g) ---%(1) if nisodd

n n-2

4. Establish a reduction formula for I,, = [ tan™ x dx
Proof
I, = [tan" x dx

= [tan® % xtan® x dx

= [tan™% x (sec® x — 1) dx

= [tan® % xsec’ x dx — [tan® % x dx

= [tan" % xd(tanx) — I,,_,
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In - T —In-2
The ultimate integral is given by
Iy = [dx =x if nis even.

I, = [tanx dx =logsecx if nis odd.

5. Establish a reduction formula for I,, = [ cot™ x dx
Proof
I, = [ cot™ 2 x cot® x dx

= [ cot™ 2 x (cosec? x — 1) dx

= —[cot"%x d(cotx) — [ cot" % x dx

_ cot™lx

Ay n-1 —In-2
The ultimate integral is given by
Iy = [dx = x if nis even.

I, = [cotx dx =logsinx if nisodd.

6. Establish a reduction formula for I,, = [ sec™ x dx

Proof

I, = [sec" x dx
= [sec" % x d(tanx)
=sec" ?xtanx — (n — 2) [ sec" ? x tan® x dx
=sec" ?xtanx — (n —2) [ sec"? x (sec?x — 1) dx
=sec" 2xtanx — (n — 2)[I, — I,,_,].

«(m—1I, =sec"?xtanx + (n — 2)I,_,

The ultimate integral is given by

Iy = [dx =x if nis even.

I = [secx dx =log(secx + tanx) if nis odd.

7. Establish a reduction formula for I,, = [ cosec™ x dx
Proof
I, = [ cosec™ x dx
= — [ cosec™? x d(cotx)
—cosec™ % x cotx — (n — 2) [ cosec™ % x (cosec? x — 1) dx
I, = —cosec" 2 xcotx — (n — 2)[I,, — I,_,].

& (m—=1I, =——cosec" 2xcotx — (n—2)I,_,
The ultimate integral is given by
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Iy = [dx = x if nis even.
I, = [ cosecx dx = —log(cosecx + cotx) if nis odd.

8. Establish a reduction formula for I,,,, = [ sin™ x cos™ x dx where
mn=>1.

Proof

Imn = J cos™ 1 x (sin™ x cos x dx)

[(cosx)*"1d (w)

m+1
cos™ 1xsin™tlx  n-1 . _
=t — sin™*2 x cos™ 2 x dx
cos™ 1xsin™*lx  n-1 . _
=———+—Jsin"xcos" 2x (1 —cos?x) dx
_cos™ lxsin™tlx  n-1 [1 I ]
- m+1 me1 l'mn=2 " Imn
. [1 n—l]l __cos™ Lxsinmtly " (n—l)l
" m+1] N m+1 m+1/ mn-2

(m+ )y, =cos™ L xsin™ x + (n— Dlpynsy

__cos™ Lxsin™mt1x no1y)
- mn-2-

s L _
mn m+n

m+n

Note By reducing the power of sinx we may arrive at an alternative

. . sin™~1 x cos™ 1 x m-1
reduction formula givenby I, , = ——— (—)1 _
g y mn m+n + m+n) M 2,n

The ultimate integral depends on m and n being odd or even.

9. Evaluate f:/z sin™ x cos™ x dx.
Proof
We have proved that I, , = [ sin™ x cos™ x dx

__cos™ Lxsin™tlx n-1
- mn—2

m+n m+n

Let f(m,n) = f:/z sin™ x cos™ x dx

/2 ne1
& fim,n) = [ . + (m)f(m,n —-2).
“ fmm) = (30) flmn = 2).

Case (i) mis even and n is even.
Letm = 2p andn = 2q where p,q € N.

~fQ@2p,2q) = (ﬁ) f(2p,2q - 2)

cos™ 1 xsin™*1 x]

m+n

141
Differential and integral calculus



__Caneas .
- (2p+2q)(2p+2q_2)f(2p, 2q 4)

(2q-1)(2q-3)..1
N (2p+2q)(2p+2q—2)...(2p+z)f(2p' 0)

Now f(2p,0) = f(;r/z cos?? x dx

_ (2p-1 2p-3 3 T

- ( 2p )(Zp—z) "2 (2)

_ [135..2p-1I[135..2q-1)] (7
Hence f(2p, 2q) = 2.4.6..(2p+2q) (2)
Case (ii) m is odd and n is even.
Letm = 2p — 1andn = 2q wherep,q € N.

2q-1
“ f2p = 1,20) = (Goso=s) (2P — 1,24 = 2)

(2q-1)(29-3) 3 _
- (2p+2q—1)(2p+2q_3)f(2p 1, Zq 4-)

(2q-1)(2q-3)..3.1
- (217+2q—1)(2p+2q—3)...(2p+1)f(zp - 10)

Now f(2p —1,0) = f:/z sin??~1x dx
_ (2p-2 2p—4 z
- (Zp—l) (2p—3) "3 .
. _ _ [24..2p-2)][135..(2q-1)]
~f@p-129)= 1.3.5..(2p+2q-1)
Case (iii) m is even and n is odd.
Letm = 2p andn = 2q — 1. We can prove that

_ [135..2p—D][2.4.6..(29~2)]
~f@p2q-1) = 1.3.5...(2p+2q-1)

Case (iv) mis odd and n is odd.
Letm =2p —1landn = 2q — 1 wherep,q € N

~f@p-12¢-1) = ((szfzqz 2))}‘(210 1,2q-3)

(2q—2)(2q—4)
- (2p+2q—1)(2p+2q—3)f(2p —1,2¢-5)

(2q-2)(2q-4)..2 _
- (2p+2q—2)(2p+2q—4)...(2p+2)f(2p LD

Now f(2p —1,1) = f:/z sin??~x cosx dx
n/2

[sm2p ]
0

. ~ o\ _ [246..Cp- 2)][2.4.6...(2q—2)]
~f@Rp—-1,2q—-1) = 2.4.6..(2p+2q-2)
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Example
1.3.5.1.3.5.7 (71:) 5w
2

/2 .
1. [ sin® x cos® x dx = —=>1357 () _ 5T
0 2.4.6.8.10.12.14 212

w2 . 13524 _ 8
2. [7/%sin® x cos® x dx = —332% 8
0 1.3.5.7.9.11 693
/2 . 2.4.1.35 8
3. [ sinS x cos®x dx = 22135~ 8
0 1357911 693
2424 _ 1

/2 .
4. [ sinS x cosSx dx = 2224 - L
0 2.4.6.8.10 60

Example 29

Evaluate I = folxz(l — x2)3/2 dyx

Solution

Put x = sin 8. Hence dx = cos 6 df.

Whenx =0,0 = 0andwhenx =1,0 =m/2.
sl = f:/z sin? 0 (cos? 0)3/% cos 6 dO

= fon/z sin? 0 cos* 0 d6

_ 131 (n)
6.4.2 \2
A

32°

Example 30
Establish a reduction formula for [ x™(logx)™ dx
Solution
Let Iy = [ x™(logx)™ dx
o = #f (logx)" d(x™*1)
[(logx)" mrl — [ x™*1 5 (logx)™™ 1( )dx]
= —[(logx)” Mt —n [ x™ (logx)" 1dx]

m+1
XM+l

(lng)n lemn 1
m+1
The ultimate integral is o = [ xMdx ==

m+1 "’

Example 31
If I, = f;/z 0 sin™ 0 dg and n > 1 prove that I, = (nnl) I, + . Hence
deduce that Iy = =,
225
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Solution
I, = [(sin®)" (6 sin6)d6
Takingu = (sin8)™ ! and dv = 6 sin 8 d6 we get
v=—60cosf +sinb
« I, = [(sin 8 — B cos B)(sin 9)"‘1]5
-n-1) f:/z(sin 0 — 0 cosB)(sinf)* 2 cosh db
=1-(—1) [2sin" "6 cosOdf
+(n —1) [26(sin6)""? cos? O df

=1-(—-1) [2(sin6)" 'd(sin6)

+(n —1) [26(sin6)""?(1 — sin® 6)d6
=1- "T‘l [sin” 8]%% + (n = Dl — (n — DI,

-1
al,(l+n—-1)=1- ("T) +(—DI,_,

anl, = %+ (n—DI,_,

n-1

1
i hy= () b 5
4 1
Now, Iy = () Is + =
2 1
b= (3)h+3
Also, I, = ["/? 0 sin 6 do
= [-6 cos 9]7;/2 + fon/z cos 6 dé
=[-0cos O + siné?]g/2 =1

2 1
Hence I; =;t5=5

Exercise 8

Evaluate the following integrals

1.f:/2xzsinxdx 2.f(;r/4sec5xdx
3.f01x2(1 —x2)5/2dx 4, f;r/4tan3xdx

5. f:/z sin? x (sin3 x + cos® x)dx

Differential and integral calculus
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6. If I, =f:/2xcos"xdx and n > 1 show that I, = _ni+("_‘1)1n_2_

2

3n? 1
Hence prove that I, = Py
Answers
7V2 3 fis
l.m—2 2.~ +:zlog(vV2+1) 3.
4.2 - llog 2 5.2
2 2 3

4.9 Integration as the limit of a sum

b }lm(l] h¥i-1 f(a +ih)
We know that (x)dx =4,. ", . where h =
Jf lim h i, fla + (i~ )]

In particularifa = 0 and b = 1 we have
1 .1 i
Jy fGdx = lim 231, £ (%)
We use this formula to express some definite integrals as the limit of a sum
and also to evaluate certain limits.

Example 32

Evaluate ff e*dx

Solution

2 e¥dx = lim h S1y fla + (i — A
= Tlli_r){)loh[f(a) +fla+h)+-+ f(a+ (n—1)h)]
= lim he® + e®h 4 ... 4 @+~ DA]

n-oo

= lim he®[1 + e" + e + - + e~ D1]

n—-oo

. emh_1
= lim he“[ . ]
n—-oo et—1

= lim e%(e?™% - 1) (L) (since h= b_Ta)

n—-oo eh—1

=e%el*-1) (since lim (ehh—1) = 1)

n—-oo

=€b—€a

Example 33

b .
Evaluate [ sinx dx
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Solution
f f)dx = hm h ¥, fla+ (i —1)h]
= llm h ¥ sinfla + (i — 1)h]
= 7ll_r){)loh [sina + sin(a + h) + ---+ sin(a + (n — 1)h)]

T sin(nh/2)
- Tlll_)l’{)lo h sin(h/2)

=7£i_r)§osl;h(f/)2)2 m[ (b—a)] sin[a+b2;a—§]

2 sin [E (b— a)] sin E (a+ b)]

= cosa — cos b.

sin [a +(n—-1) g]

Example 34

Express hm Zl 1ﬁas a definite integral and hence evaluate the
limit.

Solution

1

3 n 1 Tl
il_r)?ozi 1‘/( 2_2) n—>oo1'l (1 i/m)2
= lim = Zl 1f()wheref(x)—m

= [, f()dx
1 dx

— — [ein=1411 =%
= D [sin™* x]} >

Example 35

Express lim l+L+L+---+i] as a definite integral and hence
n—-oo Ln n+1 n+2 3n

evaluate the limit.

Solution
Jim 272, 75 = Jim S iy = lim S () where £0) = 152
= J; F(x)dx
= Ozfdx = [log(1 + x)]3
= log 3.

Exercise 9
1. Evaluate the following by expressing it as the limit of a sum
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(i) fab x%dx (i) fol x3dx (iii) f; cos x dx
2. Express the following as a definite integral and hence evaluate

(i) lim —+—+ +

n-oo Ln+1
i3
(i) rlLl—l;Ic}oZl 014+n4
i rlll—{{aloz’ 1(n+l)3
Answers
(|)§(b3 - a3 (ii)% (iii) sin b — sina
2.()log 2 (i)~ log 2 (iii) >

Differential and integral calculus
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UNIT-V

DOUBLE AND TRIPLE INTEGRALS
5.0 Introduction
In this section we shall discuss the Double integral, Evaluation of
double integral, triple integral, change of variables in double and triple
integral and introduce two important functions defined in terms of some
improper integrals and derive some properties of these functions and
Fourier series.

5.1 Double integrals
Definition

Let f(x,y) be a bounded real valued function defined on a closed
rectangleR = {(x,y)|a < x <bandc <y < d}.
Let P be a partition of R into m sub-rectangles Ry, R,, ..., R, by lines
parallel to coordinates axes. We define the norm of the partition P as
[|P]| = maximum of the lengths of the diagonals of the sub-rectangles
Ri, Ry, ..., Ry Let (x;,y;) €R,.

Consider the sum Y, f(x;, ¥;)A(R;) where A(R;) stands for the
area of the rectangle R;.

The function f(x,y) is said to be Riemann integrable over R if
||}:i||120 o f(x, ¥i)A(R;) exists and is finite.

The value of the above limit is called the double integral of

f(x,y) over R and it is denoted by [[, f(x,y) dx dy.

Thus [, fCx,y) dxdy = lim 3% f(x, y)AR).

lPll-0

Now, let f(x,y) be a function defined on a bounded set D. Let R
be any closed rectangle with sides parallel to the coordinate axes
containing D. We define a new function f;, on R by

(x,y)if x,y)eD

fD(x,y)z{]; i}{(x,y)fiD

f(x,y)is said to be integrable over D iff f,(x,y) is integrable
over R.

The double integral of f(x,y) over D is defined by the equation

/I, fey)dxdy = [[, fo(x,y) dx dy
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This definition is independent of the choice of the rectangle R

containing D. The double integral [[ f(x,y)dxdy is also written as
JI, fGy)dAor ff,) fCe,y) d(x, ).

Note [f dx dy represents the area of the region D.

5.2 Evaluation of double integrals
Double integrals

Let f(x,y) be a continuous function defined on a closed
rectangle R = {(x,y)|]a<x <bandc <y < d}.

For any fixed x € [a, b] consider the integral fcdf(x, v)dy.

The value of this integral depends on x and we get a new
function of x. This can be integrated with respect to x and we get

ff [fcd flx,y) dy] dx. This is called an iterated integral.
Similarly we can define another integral fcd [f:f(x, y)dx] dy.

For continuous functions f(x,y) we have [[. f(x,y)dxdy =
f; [fcdf(x, Y)dy] dx = fcd [fabf(x, y)dx] dy

We omit the proof of this result.

If f(x,y) is continuous on a bounded region S and if S is given by
S={,y|la<x<band ¢;(x) <y < @,(x)} where ¢, and ¢, are
two continuous functions defined on [a, b] then

Il fGoy) dxdy = [[[25) f(x,y)dy] dx.

The iterated integral in the right hand side is also written in the form
b (€3]
12 dx [22% f(x,y)dy.
Similarly  if S={xy)|c<y<dand p;(y) <x < ¢,(y)} then

d o)
JE[002 £ x, yydx]| dy

If S cannot be written in either of the above two forms we divide
S into finite number of subregions such that each of the subregion can be
represented in one of the above forms and we get the double integral
over S by adding the integrals over these subregions.
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Hence to evaluate [f f(x,y) dx dy we first convert it to an
iterated integral of the two forms given above.
Example 1

Evaluate | = f:a fxzz /(Z‘Zx

Solution

)xy dy dx

1_f4a[ﬁz (aX)dx
0 2 Ix2/4a )
4a

1 [4ax3 x® ]
3 96a?l

4a x*
==["x [4ax - ] dx =
270 16a2
__64at
-

N |-

Example 2

—(x2/q2
Evaluate I = [ dx fob B-C2/aR 3y dy

Solution

1 by [1-(x?/a?)]
1= [Ex3y2]0 dx
1 ra x? 1 1 x6 1%
=2l b2 (1= de =07 [fat = I5]
a*p?
24

Example 3
Evaluate | = fon foa €9 sin@ drde

Solution
acos@

— (T 1.2

1= sme[zr]o dae
= %f; a?cos?fsinfdo = —%az f(;Tcos2 0 d(cos8)
= —%az[cos3 o1

=-a".
3

Example 4
Evaluate f;/z Jy =z dr do

(r2+a?)?
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Solution
/2
letl = [T fo( dr do

r21q2)2

/2 d(r?) o Eap -1 1
_f [fo (r2+a2)2] do = 02;[r2+a2]0 do
/2
- [Zaz 0

fﬂ'/z dae

= m
Example 5
Evaluate [f x?y*dx dy where Dis the circular disc x> + y* < 1
Solution
In D, x varies from -1 to 1. For a fixed x, y varies from — /(1 — x?) to
V(@ —x2)
wJf, ¥y dedy = 1 [V a2y dy da

Ja-x2) x2

= 4[0 Js =9 2 y? dy dx
V(1-x%)
_ 111 2 3
=4 [3x y ]0 dx
401
= Jy ¥* (1 —x?)*? dx

= gfon/z sin® @ cos* 0 dA (putting x = sin )

=GR 6 =%
Example 6
Change the order of integration in the integral I = ff f;l/zf(x, y)dx dy
Solution
The region of integration D is bounded by the lines x = J;’;x =y;y=1
and y = 4. The region is a quadrilateral as shown in the figure.

. . . 1
In this region x varies from Sto4

When % < x <1, yvaries from 1 to 2x.

When 1 < x < 2, y varies from x to 2x.
When 2 < x < 4, y varies from x to 4.
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Hence for changing the order of integration we must divide D into sub
regions D;, D,, D5 as shown in the figure

~I=[f, fGx,y)dxdy
b J fGyydxdy+ [, [ fGy)dxdy+[, [ f(xy)dxdy
[ I FCaydy dx+ [7 [ foy)dy dx + [ [ f (e y)dy dx

Example 7
Change the order of integration for I = fon/z foza cos gf(r, O)r dr do
Solution

We know that r = 2a cos 6 represents a circle with centre (a, 0)
and radius a.

Since 0 < 8 < m/2 the region of integration is the semicircular
disc lying in the first quadrant.

In this region r varies from 0 to 2a.

Further r = 2a cos @ implies 8 = cos™! (;—a)

Hence for each fixed r, 8 varies from 0 to cos ! (i)

2

Hencel = |; afocos_l(ﬁ)f(r, 6)rdo dr.

Example 8

Evaluate [f) (x*+y*)dx dy where D is the region bounded by y =
x3,x=2andy = 1.

Solution

The region of integration is as shown in the figure.

In this region x varies from 1 to 2 and for each fixed x, y varies from 1 to

x2.

2
w ff, 02 +yDdxdy = [} [ (x* + y*)dy dx
xZ
= [ty +3y7) ax
= flz (x4 + éxé‘) dx

2 1286

1 1
= [—xs + —x7]
5 217 1 T Tos
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Exercise 1
1. Evaluate the following integrals.

) f, [Ee +y?)dax dy N

(iii) foa fomyz‘dy dx (iv) foa fyz_ya xydx dy

w [ (:dea‘i‘)’z vi) [ e °v2 dr do
(vii) f(:T/ﬁ fclos 20 :/1%

2. Change the order of integration in the following integrals
W) [} [} fx,y)dy dx
(i) foa fomxzdy dx.Hence evaluate

e QY y dxdy
(iii) fo fyz/a—(a_x)m.Hence evaluate
W) 7 127 £ e y)dy da W [ 12 f G y)dzx dy

3. Evaluate ff (1 + x + y)dx dy where D is the region bounded by the
linesy =—x,x=,/y,y=0andy = 2.

Answers

1. (I)g (ii) log (ﬁ) (iii)%a‘L (iV)ia‘l
V) (vi) = (vii) 5 — 1

2.0) f; [} (e, y)dx dy (i) 7 a*

... ra rVax ydy dx l
W Jy . i 2™

8v2

. 4 \/— 2

W) [y [z oy dx + [ 7, o f (x,y)dy dx
ma

0

W [ L0 o y)dy dx + [ [, f e, y)dy dx
44 5
3. E\/E + 3

5. 3 Triple Integrals

The definition of triple integrals for a function f(x, y, z) defined
over a region D in R% is analogus to the definition of double integral is
defined in 5.1. In definition of 5.1 we replace rectangles by parallelepipeds
and area by volume to obtain the corresponding definition of triple
integrals.
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A triple integral of a function defined over a region D is denoted

by [ff, f(x,y,2)dxdydzor [[f fCx,y,z)aVor[ff f(xy 2)d(xy,z2)
The triple integral can be expressed as an iterated integrals in
several ways. For example if a region D in R? is given by

D={(xy2)la<x<b; &;(x) <y < P,(x); Y1(x,¥) <z =<U,(x,y)}
then [[f, f(x,y,2)dx dydz = [} [ [V f(x,y,2)dz dy dax.

1(0y)
This can also be written as fab dx fflz(%) dy fﬁlz(;x;) f(x,y,z)dz.

Similarly under suitable conditions a given triple integral can be
expressed as an iterated integral in five other ways by permuting the
variables.

Example 9
Evaluate I = [* [ [ xyz dz dy dx
Solution
y
I=["'f" Exyzz]o dy dx
1 1 1 X

= Efoa Jy xy® dy dx = ;foa [ny4]0 dx

— 1095 gy = L2 ,6]"

_8f0x dx_B[ x ]0

6

48

Example 10
Evaluate I = fologafox fgﬁye“y“ dz dy dx
Solution

[ = f(:0gaf0x[ex+y+z]g+y dy dx

= Jlo8 22 — ex19] dy dx

loga [1 x
— f g [_ez(x+y) _ ex+y] dx
0 2 0

loga (1 3
=/ & (—e4x——ezx+e") dx

0 2 2

loga

1 3
— [_e4x__62x+ex]

8 4

1 3 3
:—a4—_a2+a__

8 2 8
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Example 11
dx dy dz

Evaluate I = [ff (x+y+z+1)3

x=0,y=0,z=0andx+y+z=1.

where D is the region bounded by the planes

Solution

The given region is a tetrahedron. The projection of the given
region in the x — y plane is the triangle bounded by the linesx = 0,y = 0
and x + y = 1 as the shown in the figure.

In the given region x varies from 0 to 1. For each fixed x, y varies
from 0 to 1 — x. For each fixed (x, y), z varies fromOto 1 — x — y.

o e N A v
= —éfol fol_x[(x +y+z+ 172 Vdy dx
= —%fol fol_x E— (x+y+ 1)‘2] dy dx
= —%fol Ey +(x+y+ 1)_1](1)—;: dx
= —%fol{i(l - X) +%— (x + 1)_1}dx

1
= —l[lx —Ix2 4+ 1x —log(x + 1)]0

214 8 2
1 5
=-log2 ——.
2 g 16
Exercise 2

1. Evaluate the following triple integrals.
Wwff jmxyz dz dy dx
(ii) fol dx foz dy flz x%yz dz
(i) [ f:/z fokrz sin@ drdfdg

2. Evaluate [ (x* +y* +z*)dx dy dz where D is the region bounded
by theplanesx+y+z=a;x =0;y =0andz = 0.

Answers

1.(i)§ (ii) 1 (iii) §k3n 2.
L a5

20

5.4 Change of Variables in double and triple integrals
The evaluation of a double or a triple integral sometimes

becomes easier when we transform the given variables into new variables.
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We state without proof the following theorem regarding change
of variables in double and triple integrals.

Theorem 1

Consider a transformation given by the equation x = x(u,v) and y =
vy(u, v) where x and y have continuous first order partial derivatives. Let
the region D in the x — y plane be mapped into the region D* in the u — v
plane. Further we assume that the Jacobian of the transformation J # 0 for

all pointsin D.Then [f f(x,y)dx dy = [f,. flx(u,v),y(w,v)]|J|du dv.
Similarly for triple integrals we have

[If, fGy)dxdy = fff,. flxCe,v,w), y(u, v, w), z(u, v,w)] | |du dv dw

Example 12

Evaluate I = [f xydxdy by transforming to polar coordinates where D is
the region enclosed by the circles x? + y? = a? and x? + y? = 4a? in the
quadrant.

Solution

Putx =rcosf@andy =rsinf
We know that ] = r.
Further in the givendomain D,0 <6 <m/2anda <r < 2a.

o= f(;r/z faZa (rcosirsine)rdrde
w2 N Y
= J, c05951n9[3r ]a de

3
=7% On/zcosesine dog

_7a% (/2 . .
= Tfo sin@ d(sin0)

7a3 . 2
=— [sin? 9]70”
_1a

6
Example 13

Evaluate the improper integral I = fooo e dx.
Solution
?=1= (fowe_xzdx)(fowe_yzdy)

= fooo fooo e—(x2+y2)dx dy

156
Differential and integral calculus



Putx =rcosf@andy =rsinf.Hence] =r.
The region of integration is the entire first quadrant.
Hence r varies from 0 to oo and 8 varies from 0 to /2.

s I? = fooo f;/ze‘rzr dodr = gfome‘rz rdr.

=T [P _Lor? gi_y2 =£[_1 —r2]°°
zfo e d(-r?) =2 |—ze .

s = ﬁ
2
Example 14
1—x2—y2 /2 (T .
Prove that I = [f_ (1+x2+y2) dx dy = - (5 - 1) where D is the positive

quadrant of the circle x2 + y2 = 1
Solution
Putx =rcosfandy = rsinf.

~J=r.

FurtherinD,0 <r <land0 <6 <m/2

_a\1/2
O N e R

1+r
— n'fl (1—r2)1/2 r dr
270 \1+47r2
_mrl 1-r2
270 V1—r%
w1l 1-t

= dt (byputtingr? =t)

4 1-t2

rdr

= %[sin_l t+ (1 - tz)i]z

=36

Example 15

Evaluate ffD Jx? 4+ y? dx dy where D is the parallelogram bounded by
thelinesx+y=0;x+y=1;2x —3y =0and 2x — 3y = 4.

Solution

Putx + y =uand 2x — 3y = v.

Thenj = —%
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Also D is transformed into the rectangle bounded by the linesu = 0; u =
1;v=0andv = 4.

ol = fol f:\/ﬂ(—é) dvdu = —éfolx/ﬂ[v]g du

-3

_ 8

15

0

Example 16
Evaluate I = [f[ xyzdxdydz where D is the positive octant of the

. L x2 y2 Z2
ellipsoid Stats= 1.

Solution
Putx =au,y = bvandz = cw
y.2) a 0 O
-'-]=W=O b 0|=abc
0 0 ¢

Let D* be the image of D under the above transformation. Then D* is the
positive octant of the sphere u? + v? + w? = 1.

~ I = [[[ ,abc uvw abc du dv dw

= a’b?c? [ff,. uvw du dv dw
Now, putu = rsin 6 cos ¢
v =rsinfsin @
w =r1cosf
ThenJ =r?sin6

o I = a?b?c? fol f;/z fon/z r°sin® @ cos @ cos @ sinp do d dr

= a’b?c? folrsdr f:/z sin® @ cos 6 do f:/z sing cos @ do
_ 2221611-4 ”/21-2 /2
=a‘b°c [67” ]0[4sm 9]0 [Zsm (p]

_ a?b?c?
48

0

Exercise 3
1. Evaluate the following double integrals using change of variables or
otherwise over the region indicated.
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(M ffD J(x2+y2)dx dy;Dis the region bounded by the circle x? +
2 _ 42
y? =a?.
(i) [, V(x? +y?)dx dy;Dis the region in the x — y plane bounded
by x2+y2=4andx?+y?=09.
2. By transforming into polar coordinates evaluate.

a x?dxdy Vx—x2 4xy = _(y2442
f f 0 (x24y2)3/2 (ii f f x2+y? e=(*+7%) dy dx
3. Prove that [ff xyz(x* +y? + z?)"/? dx dy dz where D is the positive
n+6
octant of the sphere x2 + y2 + z2 = a? is S‘Zn%) wheren + 5 > 0.

x2  y%  z2 .
4. Evaluate [ff, xyz (a_2+ﬁ+c_2) dx dy dz where D is the positive

2 2 2
octant of ellipsoid Z—z + 2’—2 + i—z =1.
Answers
. E 3 .o ﬁ
1.()sma (ii) =
2.()a/V2 (i) 1/e
BETA AND GAMMA FUNCTIONS

5.5 Beta and Gamma functions
Definition
The Beta function is defined by
p(m,n) = fol x™ 1 —x)"tdx (m,n>0).
The Gamma function is defined by
I'(n) = fome"‘ x"ldx (n>0).

Theorem 2
The Beta function g (m, n) converges if m,n > 0.
Proof
Let [= fol x™ 1 —x)"Ydx=1+1, where I = fl/z x™ (1 -
)" 1 dx

We first consider I,.

When m > 1itis a proper integral and hence I converges.

When m < 1 the function f(x) = x™ 1(1 — x)"*"! has an infinite
discontinuity at x = 0.
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Now lim x1™™f(x) = lim(1 — x)* 1 = 1.

x—0 x—0
Hence by p-test, I, is convergentif 1 —m < 1.
(i.e.) I is convergent if m > 0.

Similarly I, is convergent if n > 0.
Hence I = I; + I, converges whenm > 0 and n > 0.

Theorem 3
The Gamma function I'(n) converges if n > 0.

Proof

Let] = fome‘xx”‘ldx (n>0)
=1, + I, where I, = foae"‘x"‘1 dx and I, = fame"‘x"‘1 dx and a > 0.

First we consider ;.

Whenn > 1it is a proper integral and hence I; converges. When

n < 1, f(x) = e~*x™"! has an infinite discontinuity at x = 0.

In this case lim x* ™" f(x) = lime™ = 1.
x—0 x—0
Hence by u-test I, is convergentif 1 —n < 1.

(i.e.) I is convergent if n > 0.
Now we consider [,.

-
When x > 0, e* > = for any positive integer r.
r!

.- r!

~e < _xT

. ,—X,n—1 r!
e "X < xT-M+1

Whenever n may be, we can choose r such thatr —n+ 1 > 1.
With this choice of r, faw

Hence by comparison test I, is convergent.
Hence I = I; + I, converges whenn > 0.

dx

=77 IS convergent.
X

Properties and results involving Beta and Gamma Functions

oo x_1

1.B(mn) = | T dx

Proof

(1+x)ym+n

Putx = 2. Hence y ==X,
1+y

1-x

Whenx =0,y = 0.Whenx - 1,y — oo,
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— Y
Also dx = TR

~pmm) = [7 .

T iaianE Y

m-—1

w  ym-1
=l G

o xMm-1

= Jo gy 94X

2.8(m,n) =2 fon/z(sin x)?™ 1(cos x)?* 1 dx

Proof

Put x = sin®t.

Whenx = 0;t = 0andwhenx = 1;t = /2.

s~ B(im,n) = fon/z (sin? t)™ 1(cos? t)" 12 sint cos t dt

=2 fon/z(sin x)?™ 1(cos x)?" 1 dx.

3.B(m,n) = B(n,m)

Proof
B(im,n) = fol x™ 11— x)" 1 dx.
Putx =1-—y.

~Whenx =0,y =1andwhenx =1,y =0.
£ Bmm) = [1xm1(1 - )" dx

= fol(l —_ y)m—lyn—l (_ dy)

= [yt @ —y)™tdy

= p(n,m).

4. p(m,n) = B(m+ 1,n) + B(mn+ 1)
Proof

B(m,n) = fol x™ 11— )" Ldx
= fol x™ 11 —x)" M (x +1—x)dx
= fol x™(1 —x)" Tdx + fol x™ (1 — x)" dx
=pB(m+1,n)+ B(mn+1).
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5.'(n+ 1) = nl'(n)
Proof
'n+1) = fooo x"e *dx
= ;ggo[foa x"e *dx| = ll_)rg[— foa x"d(e™)]

= lim [[-x"e™*]4 + foane_"x"_1 dx|

a—oo

= lim [—-x"e~%]¢ + nl'(n)

=nl'(n) [since lim (—x"e %) = 0]
6.T1)=1
Proof

rQ) = [ xe™dx
= lim [[-xe ™]¢ + foae‘x dx|

= lim[—e™*]§

a—oo

= lim[—e™® + 1]

a—oo

=1.

7.T(n + 1) = n! where n is a positive integer.

Proof

We have I'(n + 1) = n['(n) (by 5)
=nn—-—DI'n-1)
=nn-1)..21.TQ1)
=n! (using 6)

8.T'(n) =2 fooo eV’ y?n-1dy

Proof

We have I'(n) = fow e ¥x™ ldx

Put x = y%. Hence dx = 2y dy.

AT = [ e (y))" 12y dy
=2f ey dy
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r(m)r(n)
I'(m+n)

9.p(m,n) =
Proof
We have (by 8) ['(m) = mee‘yzyzm‘1 dy and
I'(n) = Zf e~ ¥ x2n=1 gy
~T(m)I'(n) = 4f ey’ y2m= 1dyf e x2n=1 gy
=4["["e e~(*+¥%) x2n=1 gy gy,
Putx = rcosf andy = rsinf.Hence |[J]| = r.

Further the region of integration is the entire first quadrant and hence r
varies from 0 to oo and 6 varies from O tom/2.

~T(m)I'(n) = 4f fn/z T p2mA2n=1(cos )2 1(sin )%™ 1 dO dr
= 4f e T p2mtan—1 dr |, /2 (cos 8)?""1(sin9)?™1 do
—r2 m4n—-11 /2 n— . m—
:4[0 e " (rH)mt 1Ed(r2) Jy “(cos 8)*"*(sin)>""" d6
=4 E r(m + n)] E B(m, n)] (using (2))
=I(m+n)B(m,n).

r(m)r(n)
B(m )_ r(m+n)

10.r(;)=vr

Proof

We have I'(n) = Zf e~ x2n=1 gy (using 8)
— Zfo e~ %% x21/2)~1 gy

[‘(%) =2 foooe—xz dx =2 (?)
=+r.

Alter We know that S(m,n) = f”/z(sin x)2™1(cos x)2"1 dx
SN =2 dx = 2l =

% = (using (9))
[T/ =n
2r(3)=vm

2

11.T(n) = fol[log(l/x)]"‘1 dx
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Proof

We have that I'(n) = f0°° e~ *x" 1 dy.

Put x = log(1/y). Hence dx = —(1/y)dy
Whenx =0,y = 1and whenx = oo,y = 0.

w1 = [ y[log ()] (=) ay
= fol [log G)]n_l dx .

12,221 ()T (n + %) =Tr2n)r
(This is known as the duplication formula)
Proof

Letl = fon/z sin®™ x dx

We notice that fon/z sin?™ 2x dx =1

For, fon/z sin?" 2x dx = %f; sin?"y dy  (putting 2x = y)
= fon/z sin®*y dy

(since sin?™( — y) = sin®" y)

.y
Taking I = fon/z sin?" x dx = f:/z(sin x)z(""%)_l(cos x)z@_1 dx
1 11
=38(n+33) (by2)
_ (3)rG) _ rneg)vm :
T 2f(n+1) | 20(n+1) (1)

Now taking I = fon/z sin®™ 2x dx
= f:/z 22" (sin x)?™(cos x)?™ dx
“fp(rriasd)] oo
=2 r(zn+1) (2)
From (1) and (2) we get

Mt VT _ ones M(neg)r(ntg)
2F(n+1) rzn+1)

A T@n+ DVE = 22T (n + DT (n + %)
# 2n TQVT = 22"nT ()T (n + %) (using (5))
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@ 2210 ()T (n + %) = T2n)Vr.

5.0 ()r(3) = var
Proof

Putn = % in the duplication formula.
() ="

~ Van

Example 17
Evaluate fom xbe 3*dx

Solution
Puty = 3x.Hencedy = 3 dx.

Now, fomxse—sxdx _ fooo (2)6 e~y (d_y)

3
=) e = () T
=() o=5
Example 18

oo o=St
Prove that [, % dt = \/m/s wheres > 0

Solution
Put st = u.Hence s dt = du

3 fmﬁ dt = %fowe_“u(_%) du

0 Vi
- 2r(E) -7

Example 19
Evaluate I = fol x*(1 —x)3%dx
Solution
I= [ x5 (1—x)*tdx
_ _TEr@ _ 43 _ 1
=pG.4) = re) 8 280
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Example 20
Provethatf:/z\/%f;/zx/mde =7
Solution
f:/z Vsin@ do = f:/z(sin 9)%(cos 0)°do
= fn/z(sine)z() (cos 6) 2(3)- tde

-
- [t

2 deé 2 _1
Now, fon/ Norv il fn/ (sm@)( 2)d9 = lﬁ G,;)

_ 3[%]

G

r@ArQ)] . [2rErG)
i v a0 =)« [
O - w10
Example 21
Prove that f:/zsinmxcosnx dx:%ﬁ (mTHnTH) . Hence find (i)

/2 . . (/2 .
fo/ sin® x cos® x dx (i) fo/ sin® x cos® x dx

Solution
We know S(p,q) = 2 fn/z (sinx)??~1(cos x)?971 dx
Putp = m—“and nTH
2p—1—mand2q—1=n
B (mTH,nTH) =2 fn/z sin™ x cos™ x dx
/2 m+1 n+1
Hence [, sin™ x cos™ x dx = —ﬁ (_T)

5+1 6+1 7

(i) fon/ sin® x cos® x dx——ﬁ (— —) =-ﬁ( 3

_ _[r(s)r(7/2) 1| r@erE/2 | 1 ( 2123 ) _ 8
=2 =

ras/2) 1 2 EEZr(7/z) 2\11.9.7 693

(ii) fn/ sin® x cos® x dx _—ﬁ (ﬂ E) =1p (Z,E)

2 2
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[r(7/2)r(9/2)] 1[353T (/205555 T(1/2)
=3 r(8) T2 7!

_ 5[1.3.5.1.3.5.7] _ E[ 715 ]

T2 27.71 T 21321471

_ 5w

T o1z

Example 22
Prove that fooo e ™ dx = g using Gamma function.

Solution
Letl = fowe‘xz dx

2 _ _dy_ dy
Put x* = y so thatdx = = 2\/_
_y dy _ 1 v
I_f yzd—z_foeyyz 1dy— (2)27
Exercise 4
1. Evaluate (i) fooo x%e3*dx (i) fooo x2e*’dx

2. Evaluate fl 7(1 — x)8dx
3. Evaluate (i f (1 —x)%dx (i) fol x3(1 — x2)%/2dx

(iii f x3V1 —x dx
. 0 X (1+x5)
4.Find the value of [/ o
5. Evaluate (i) f;/z cos® x sin® x dx (ii) f;/z sin® x cos'® x dx
Answers
. 80 . \2m 718! L1 1 )
1'(')E (||)? Z.E 3. (')5 (||); (|||)§
1 W2 2
ﬁ 5. (I)E (")E

FOURIER SERIES
5.6 Fourier series
Definition
Let f(x) be a bounded integrable function defined on [—7, 7].
The trigonometric series az—" + >, (a, cosnx + b, sinnx) where

ag == " f(x) dx
a, = %f_nnf(x) cosnx dx
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b, = - f_nnf(x) sinnx dx

T
is called Fourier series of f(x) and a,, b, are called Fourier coefficients of

f(x)
Fourier proved that for several functions f(x), its Fourier series
actually converges to f(x).

Note If f(x) is defined in an arbitrary interval [1, A + 2u] of length 2y,

5.6.1 The Cosine and Sine series

Let f(x) be defined in the interval [0, ]. Define f(x) = f(—x) if
-1 < x < 0.Then f(x) is an even function in [—, 7].

We know thatsinnxis an odd function and cosnxis an even
function. Hence f(x) sinnx is an odd function and f(x) cos nx is an even
function.

o by, = %f_nnf(x) sinnx dx =0anda, = %f_nnf(x) cosnx dx
(ie)a, = %f_nnf(x) cosnx dx
Hence the corresponding Fourier series of f(x) is the cosine
series given by f(x) = % + Y a, cosnx dx where a,, is given above.
Similarly if we define f(x) = —f(x) if - < x < 0then f(x) inan
odd function in [—m, ] and its Fourier series becomes the sine series

¥ , b, sinnx where b,, = %f_nnf(x) sinnx dx.

Example 23

Determine the Fourier expansion of f(x) = x where-Tt <x <m
Solution

Letf(x) =x

ap == [T f(x) dx
= %f_nnx dx
S -

a, = %f_”nf(x) cosnx dx
= %f_nnxcos nx dx

1 [[xsinnx]™ 1w,
==|[——=| —=/_ sinnx dx
T n - T
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1 [x sinnx = cos nx]"
b n nZz I_,
1 [cosnx]TI
Tnznl w1,

1
= [cos nt — cos(—nm)]

1
= ——(cosnm —cosnm) =0

nem

1 m .
by =—J_ xsinnx dx

1 [—x cosnx _ sin nx]"
T

T n n2

-1 [ cosnm + 7 cos nm|
nm

2 cosnm

n
2(-D"
n
_ 2(_1)n+1
- n

ax =Y (=1t (%) sinnx

sinx sin2x = sin3x
Lx = 2[———+——"']
1 2 3
Example 24

—xif —-nm<x<0 . . .
If f(x) = { N i; O<x<m expand f(x) as a Fourier series the interval

(—ﬂ, ﬂ)
Solution
Clearly f(—x) = f(x) forall x € (—m, ).
~ f(x) is an even function in (—mx, ).
~ f(x) can be expanded as a Fourier series of the form ny
2
Yom1 Gy COSNX.
ap =~ 7 f(x) dx
= %fonf(x) dx (since f(x) is an even function)
2 2 [x2]"
=2l xax =25
2 [n?
=2lzl=~
a, = %f:x cosnx dx
s

U

2 [xsinnx 2 (.
[—] — = sinnx dx
n o nm’0
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2
= n— [cosnr]§
2 q(- R
_{ —m if nis odd
0 if niseven
T cosnx
“fx)=5-7X% (n—) where n is odd.

T
2
T cosXx cos 3x cos 5x
0 =E-2[ v

Example 25

Find the Fourier (i) cosine series (i) sine series for the function f(x) = 7 —
x in (0, ).

Solution

(i) Let f(x) = — x.

The Fourier cosine series of f(x) is given by

f(x) =ay+ X1 a,cosnx

a, = %f_nn(n —x) dx

I,
xZ
=2(%)=n
a, = Zf”(n — x) cosnx dx
[{ Smnx} + - f sinnx dx]

_ 2[ cosnx]
T

(D)™ +1]
_ {—2 when n is odd
—-_ mn
0 whenniseven
. LT 49w cos(2n-1)x
Fmox =g nzn:l (2n-1)2
(i) Let f(x) =m—x. The Fourier sine series of f(x) is given by

Yomy by, sinnx.

nnz

b, = %f:(n — x) sinnx dx

_ s
_ %[{(n x)nCosnx}o _lfn cosnx dx

2 (m _ 2
== (—) -—= [sm nxlg ==
T \n n n

_x:22n=1

sinnx

n
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Example 26

If f(x) =x is defined in -1 <x <[ with period 2l find the Fourier

expansion of f(x)

Solution

Since f(x) is an odd function a,, = 0 foralln > 0.
20l

Now, b, = Tfo x sin (@) dx

1

2 Ix nmx 1? . (nmx
=Z|—=cos(— )+ 5=sin(—

l nm l n2n? 1 /g
2 ( 12 cosnn) _21-n
T nm - nm
_ 2(—1)n+1l

nm

. L 2 - nnx
~ The Fourier seriesis x = =Y, [( " Lsin (T)]
T n

Example 27

Find the half range Fourier sine series of f(x) = xin 0 < x < 2.

Solution
The Fourier sine series for f(x) in (0, 2) is given by

f(x) = X3z by sin (%) where b, = %foz f(x) sin (%) dx
2 . nmx
= fo X sin (T) dx
_ | * cos("57) N 4Sin($) 2
B nm n2g2
_ 4cosnm) _ 4 [(-D"
_(_ nm )__;[ n ]
=~ The Fourier sine series for f(x) = x is given by

4 Qoo D" ., [(nnx
x = =13 [Ssin ()]

n

0

Exercise 5
1. Find the Fourier series to represent f(x) in (—m, )

] -1 in—-nT<x<0
(|)f(x)={1 m0<x<m
. 1 in—-n<x<0
(n)f(x)={_2 in0<x<m
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0 in—-nmt<x<0 . . L
2.1ff(x) = { , - rove that its Fourier series is f(x) =
f@) X m0<x<np f@)

. . 2
r_2 [Coix —COSZSX + ] + [—Smx TR ] . Hence prove that L=
4 T 1 3 1 2 8
1

L= Gyt
3. Expand the function y = cos 2x in a series of sines in the interval (0, 7).

Answers
1.00) f(x) _ i[sinx + sin 3x + sin 5x + ]
’ ol 1 3 5
. 1 6 oo Sin(2n+1)x
) 2 nzn:o 2n+1
sinx 3sin3x 5sin5x
[ 4]

4
3.—= 2 2_32 2_c2
24-1 24-3 24-5

s
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