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Differential and integral calculus 

UNIT- I 

 

LIMITS AND CONTINUITY, DIFFERENTIATION 

LIMITS AND CONTINUTIY 

1.0 Introduction 

In this chapter we consider functions whose domain and range 

are subsets of R and we consider the limit of such functions. This concept 

of limit is basic to the study of continuous functions and differential 

calculus. 

The concept of differential coefficient and the operation called 

differentiation are basic to the theory of differential calculus this chapter is 

devoted to the study of differentiation and the algebra of derivatives. 

 

1.1 Limits of a function 

Definition  

Let� ⊆ �. A function �: � → � is called a real valued function of 
real variable. 

 Throughout this chapter we shall be concerned with such 

functions only and in most cases the domain of the function is restricted to 

an interval in R. It may happen that for a function � as 	 approaches closer 
and closer to 
 the value �(	) approaches closer and closer to a definite 
real number. For example if �(	) = 	� + 1 then as 	 approaches closer to 
closer to 2, �(	) approaches closer and closer to 5. We say that the limit of �(	) = 	� + 1 as tends to 2 is 5, and we write lim�→�(	� + 1) = 5. 
 Now, consider the function �(	) = ����

���  . We proceed to 

investigate what happens when 	  approaches 1. In this case both 

numerator and denominator approach 0. It would be meaningless to say 

that the function approaches 
�
� since 

�
� is not a symbol for any number.  

However 
����
��� = (���)(���)

��� = 	 + 1 provided 	 ≠ 1. 
Also we are concerned with what is happening to the function as 	 approaches 1 and not with what happens when 	 = 1. Moreover while 	 

approaches 1, 
����
���  and 	 + 1 have exactly the same values. Further 	 + 1 

approaches 2 as 	 approaches 1. 
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Hence 
����
���  approaches 2 as 	 approaches 1. 

Thus lim�→�
����
��� = 2. 

The precise meaning of this concept of limit is given in the 

following definition. 

 

Definition 

A function � is said to approach to a limit  as 	 tends to 
 if given � > 0 there exists ! > 0 such that 0 < |	 − 
| < ! ⇒ |�(	) − | < �  and 
we write lim�→& �(	) = . 
Note  

1. It should be carefully noted that the condition 0 < |	 − 
| < ! 
excludes the point 	 = 
 from consideration. Hence the definition of limit 

employs only values of 	  in some interval (
 − !, 
 + !) other than 
 . 
Hence the value of �(	) at 	 = 
 is immaterial and in fact to consider lim�→& �(	) , �(	) need not be even defined at 	 = 
. Even if �(
) is defined 
it is not necessary that lim�→& �(	) = �(
). (refer example 3 below). 

2. To talk about lim�→& �(	), it is necessary that the domain of 

definition of the function f must contain the set (
 − !, 
 + !) − (
) for 
some ! > 0. A subset A of R containing an interval of the form (
 − !, 
 +!)  for some ! > 0 is called a neighborhood of 
 . Thus to talk about lim�→& �(	) it is necessary that �(	) must be defined in some neighbourhood 

of 
 except perhaps at 
. 
 

Example 1 lim�→& *	 = *
 where * is any non-zero real number. 

Solution  

Let � > 0 be given. Then |*	 − *
| = |*||	 − 
|. Now choose ! = +
|,| . ∴ 0 < |	 − 
| < +

|,| ⇒ |*	 − *
| < |*| +
|,| = �  

∴  lim�→& *	 = *
. 
 

Example 2 lim�→� 	� = 0. 
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Solution  

Let � > 0 be given.  
Then 0 < |	| < √� ⇒ |	� − 0| = 	� < �. ∴ lim�→� 	� = 0  
Example 3 

Let �(	) = 02	 + 3   2� 	 ≠ 110          2� 	 = 1 . Then lim�→� �(	) = 5. 
 

Solution  

Let � > 0 be given.  
Now |2	 + 3 − 5| = |2	 − 2| = 2|	 − 1|. 
Choose ! = �

� �. 
Then 0 < |	 − 1| < �

� � ⇒ |(2	 + 3) − 5| < 2 3�
� �4 = � 

∴ lim�→� �(	) = 5  
Note that here �(1) = 10 so that lim�→� �(	) ≠ �(1). 
 

Example 4 

lim�→�
���5
��� = 4. 

Solution  

Let � > 0 be given. 
Now, when 	 ≠ 2, ���5

��� = 	 + 2. 
∴ 7���5

��� − 47 = |	 + 2 − 4| = |	 − 2|. 
∴ If we choose ! = �, then  0 < |	 − 2| < ! ⇒ 7���5

��� − 47 < � 
∴  lim�→� 3���5

��� 4 = 4. 
 

Exercise 1 

Prove the following: 

1. lim�→�(3	 − 4) = 2                2. lim�→8�
(1 − 	) = �

�                         3. lim�→9
���:
��9 = 6 

4. lim�→��
������

��� = −3              5. lim�→&(<	 + =) = < 
 + =              
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6. Let �: � → � be defined by �(	) = 0	   2� 	 ≠ 02   2� 	 = 0. Prove that lim�→� �(	) =
0. 
 We state without proof the following theorems on limits. 

 

Theorem 1.1  

 If lim�→& �(	) =  and lim�→& �(	) = >, then  = >, (i.e.) the limit of 

�(	) as 	 → 
, if it exists, is unique. 
 

Theorem 1.2 

 If  lim�→& �(	) =   and lim�→& ?(	) = > , then lim�→&@�(	) + ?(	)A =  +
>. 

 

Theorem 1.3 

 If  lim�→& �(	) = , then lim�→& * �(	) = * where * is any real number. 

 

Theorem 1.4 

 If  lim�→& �(	) =   and lim�→& ?(	) = > , then lim�→&@�(	) − ?(	)A =  −
>. 

 

Theorem 1.5 

If  lim�→& �(	) =  and lim�→& ?(	) = >, then lim�→& �(	)?(	) = >. 

 

Theorem 1.6 

If  lim�→& �(	) =  and �(	) ≠ 0 and  ≠ 0, then lim�→&
�

B(�) = �
C . 

 

Theorem 1.7 

If  lim�→& �(	) =   and lim�→& ?(	) = >  where > ≠ 0  and ?(	) ≠ 0 , 
then lim�→&

B(�)
D(�) = C

E. 
 

Theorem 1.8 

If  lim�→& �(	) = , then lim�→&|�(	)| = ||. 
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Theorem 1.9 

 Let �  be a bounded function. Let lim�→& ?(	) = 0 . Then 

lim�→& �(	)?(	) = 0. 
 

Theorem 1.10 

 If �(	) ≥ 0 and lim�→& �(	) = , then  ≥ 0. 
Theorem 1.11 

 If �(	) ≤ ?(	) and lim�→& �(	) =  and lim�→& ?(	) = >, then  ≤ >. 

 

Theorem 1.12 

 If  ?(	) ≤ �(	) ≤ ℎ(	)  and lim�→& ?(	) = lim�→& ℎ(	) =  , then 

lim�→& �(	) exists and lim�→& �(	) = . 
 

Theorem 1.13 

 limI→� sin L = 0. 
 

Theorem 1.14 

 lim�→� cos 	 = 1. 
 

Theorem 1.15 

 lim�→& sin 	 = sin 
. 
 

Theorem 1.16 

 limI→�
OPQ I

I = 1 
 

Theorem 1.17 

 lim�→R 31 + �
�4� = S. 

 

Theorem 1.18 

 lim�→�
TUQ �

� = 1. 
 

Example 5 
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Evaluate lim�→�(3 + 2	 + 5	� + 6	9). 
Solution lim�→�(3 + 2	 + 5	� + 6	9)  
 = lim�→� 3 + lim�→� 2	 + lim�→� 5	� + lim�→� 6	9  
 = 3 + 2 3lim�→� 	4 + 5 3lim�→� 	�4 + 6 3lim�→� 	94  

= 3 + 4 + 20 + 48 = 75. 

 

Example 6 

If �(	) = 
� + 
�	 + 
�	� + ⋯ + 
W	W, prove that lim�→& �(	) = �(
). 
Solution lim�→& �(	) = lim�→&(
� + 
�	 + 
�	� + ⋯ + 
W	W)  
          = lim�→& 
� + lim�→& 
�	 + ⋯ + lim�→& 
W	W  
          = 
� + 
� 3lim�→& 	4 + ⋯ + 
W 3lim�→& 	W4  
          = 
� + 
�
 + ⋯ + 
W
W = �(
). 
 

Example 7 

Evaluate lim�→� 39��5
��9 4 

Solution lim�→�(	 − 3) = −1 ≠ 0. 
∴ lim�→�

9��5
��9 = XPYZ→�(9��5)

XPYZ→�(��9)   
  = ��

�� = −10. 
 

Example 8 

Evaluate lim�→�
�[�������

��� . 

Solution 

When 	 ≠ 1, �[�������
��� = (���)\�������]

��� = 	� + 2	 + 1. 
∴  lim�→�

�[�������
��� = lim�→�(	� + 2	 + 1) = 1 + 2 + 1 = 4. 

 

Example 9 
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Show that lim�→� ^	 sin 3�
�4_ = 0. 

Solution 

Let �(	) = sin 3�
�4 and ?(	) = 	. 

Clearly |�(	)| ≤ 1 ∴ � is a bounded function. 
Also lim�→� ?(	) = lim�→� 	 = 0. 
∴  lim�→� ^	 sin 3�

�4_ = 0                                           (by theorem 1.9) 

 

 

Exercise 2 

1. Evaluate the following limits: 

(i) lim�→�(5	� + 3	 − 2)                (ii) lim�→�(2	9 − 5	)                   
(iii) lim�→�

������`
����                           (iv) lim�→�

���
√���                                

(v) lim�→�
5�[������

9�����                         (vi) lim�→�
���9����
9���`���  

(vii) lim�→�
�[��
���                                (viii) lim�→�

�[�`��a
���������                   

(ix) limb→��
b[�9b���b

b��b�a                      (x) limc→��
c[�5c��5c
(c��)(c�9)                       

(xi) lim�→� ^	 cos 	 3�
�4_ 

2. Let �(	) = 
�	E + 
�	E�� + ⋯ + 
E  and ?(	) = d�	W + d�	W�� +
⋯ + dW . Prove that lim�→&

B(�)
D(�) = B(&)

D(&) if ?(
) ≠ 0. 
 

1.2 Left and Right limits 

  While defining the limit of �(	)  as 	 → 
 , we consider the 
behavior of �(	) at points which are near to 
 and these points can be 
either to the left of 
 or to the right of 
. However it is often necessary to 
know the behavior of �(	) as 	 tends to 
 in such a way that 	 always 
remains greater than (or less than) 
. This leads us to the concept of right 
and left limits of �(	) at 	 = 
. 
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Definition 

A function � is said to have  as the right limit at 	 = 
 if given � >0, there exists ! > 0  such that 0 < 	 − 
 < ! ⇒ |�(	) − | < �  and we 
write lim�→&� �(	) = . Also we denote the right limit  at 
 by �(
 +) 

A function � is said to have  as the left limit at 	 = 
 if given � >0, there exists ! > 0  such that 0 < 
 − 	 < ! ⇒ |�(	) − | < �  and we 
write lim�→&� �(	) = . Also we denote the left limit  at 
 by �(
 −) 
 

Theorem 1.19 lim�→& �(	) =   iff lim�→&� �(	) = lim�→&� �(	) =  . 
(i.e.) lim�→& �(	) exists iff the left limit and the right limit of �(	) at 	 = 
 
exist and are equal. 

 

Note 

If lim�→& �(	) does not exist, then one of the following happens. 
(i) lim�→&� �(	) does not exist. 
(ii) lim�→&� �(	) does not exist. 
(iii) lim�→&� �(	) and lim�→&� �(	) exist and are not equal. 
Thus the concepts of left limit and right limit can be used in many cases to 

prove the nonexistence of limit. 

 

Example 10 

 Let �: � → � be defined by �(	) = 00 2� 	 ≤ 01 2� 	 > 0    
Then lim�→�� �(	) = 1 and lim�→�� �(	) = 0. 
 

Example 11 

Let �: � → � be defined by �(	) = @	A where @	A is the integral part of 	. 
Then for any integer n, lim�→W �(	) does not exist, since lim�→W� �(	) = e and 
lim�→W� �(	) = e − 1.  
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Exercise 3 

1. Let �: @1, 3A → � be defined by �(	) = 0	�          2� 1 ≤ 	 ≤ 23	 − 4  2� 2 ≤ 	 ≤ 3. Show that �(2 +) = 2 and �(2 −) = 4. 
2. Let �: @0, 1A → � be defined by �(	) = f	          2� 0 ≤ 	 ≤ �

�1 − 	  2� �
� ≤ 	 ≤ 1. Show that 

�(0 +) = 0 and �(1 −) = 0.  
 

1.3 Continuous Functions 

Definition 

 A function � is said to be continuous at 	 = 
 if given � > 0, there 
exists ! > 0 such that |	 − 
| < ! ⇒ |�(	) − �(
)| < �. 
 If a function �  is not continuous at 
  then �  is said to be 

discontinuous at 
. 
 A function � is said to be continuous if it is continuous at every 
point of its domain. 

 

Note  

1. � is continuous at 	 = 
 iff lim�→& �(	) exists and is equal to �(
).  
2. If a function � is defined on a closed interval @
, dA, then at the 

end point 
 we can only talk about the right limit of �(	) and similarly at 

the end point d we can only talk about the left limit of �(	). Hence the 
continuity of � at the end points 
 and d are defined by the conditions �(
) = lim�→&� �(	) and �(d) = lim�→g� �(	). 
 

Example 12 

Let �: � → � be defined by �(	) = 	 + 3. Then � is continuous at every 
point 
 ∈ �. 
Solution 

For, lim�→& �(	) = lim�→&(	 + 3) = 
 + 3 = �(
). 
 

Example 13 

Let �: � → � be defined by �(	) = *	. Then � is continuous at every point 
 ∈ �. 
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Solution 

For, lim�→& �(	) = lim�→& *	 = *
 = �(
). 
 

Example 14 

Any polynomial function given by �(	) = 
� + 
�	 + 
�	� + ⋯ + 
W	W is 
continuous at every point 
 ∈ �. (refer example 6)  

 

Example 15 

Let �: � → �  be defined by �(	) = sin 	 . Then by theorem 1.15, �  is 
continuous at every point 
 ∈ �.   
 

Example 16 

Let �: � → � be defined by �(	) = |	|. Then � is continuous at every point 
 ∈ �. 
Solution 

For, lim�→& �(	) = lim�→&|	| = |
| = �(
). 
 

Example 17 

Let �: � → � be defined by �(	) = @	A. Then � is not continuous at each 
integer n. For lim�→W �(	)  does not exist. (refer example 11). 

 

Exercise 4 

1. Show that any constant function is continuous at every point. 

2. Show that the identity function �: � → �  defined by �(	) = 	  is 

continuous at every point. 

Remark 

(i) If � and ? are continuous at 
 then � + ? is continuous at 
. 
(ii) If �  and ? are continuous at 
 then �? is continuous at 
. 
(iii) If �  and ?  are continuous at 
  and ?(
) ≠ 0  then (�/?)  is 

continuous at 
. 
(iv) If � is continuous at 
 then |�| is continuous at 
. 
(v) If � is continuous at 
 and ? is continuous at �(
), then ? ∘ � is 

continuous at 
. (i.e.) Continuous function of a continuous function is 
continuous.   
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Example 18 

�(	) = 	 is continuous at every point. Hence  ��  is continuous at every 
point 	 ≠ 0. 
Also 

�
�  is not defined at 	 = 0. 

∴ �
�  is not continuous at 	 = 0. 

 

Example 19 �(	) = 	� + 1 is continuous at every point. 
Also 	� + 1 ≠ 0 for all 
 ∈ �.  
∴ �

(����) is continuous at every point. 
 

Example 20 

�(	) = tan 	 is continuous at all point except at 	 = (2e + 1) m
� , e ∈ n. 

For, �(	) = OPQ �
opO �   

Now, sin 	 and cos 	 are continuous at all points. Also cos 	 = 0 where 	 =(2e + 1) m
� , e ∈ n. 

∴ tan 	 is not continuous at these points. 
At all other points tan 	 is continuous. 
 

Example 21 �(	) = sin 2	 is continuous at all points since, sin 2	 = 2 sin 	 cos 	 which 
is a product of continuous functions. 

 

Example 22 

Let �(	) = sin 	 and ?(	) = �
� . Then � is continuous at all points and ? is 

continuous at all points 	 ≠ 0. 
∴ \� ∘ ?(	)] = �\?(	)] = � 3�

�4 = sin 3�
�4 is continuous at all points 	 ≠

0. 
 

Example 23 

Let �(	) = sin 	 and ?(	) = 	�. ∴ � and ? are continuous at all points. 
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∴ \? ∘ �(	)] = ?\�(	)] = ?(sin 	) = sin� 	. 
 

Definition 

 If a function � is discontinuous at 
, then 
 is called a point of 
discontinuity for the function.        

 

Note 

If 
 is a point of discontinuity for a function then any one of the following 
cases arise. 

(i) lim�→& �(	) exists but is not equal to �(
). 
(ii) lim�→& �(	) does not exist. 

(i.e.) (a) Either lim�→&� �(	) or lim�→&� �(	) does not exist. 
or (b) lim�→&� �(	) and lim�→&� �(	) exist but are not equal.  
 

DIFFERENTIATION 

1.4 Differentiability 

Definition 

Let � be a function defined on an open interval q in R. Let 	 ∈ q. We say 

that � is differentiable at x if limr→�
B(��r)�B(�)

r   exists and is finite. 

The value of the above limit is called the differential coefficient or 

derivative of � with respect to 	 and it is denoted by �′(	) or tB
t� or 

tb
t� or u′ 

where u = �(	). 
If limr→��

B(��r)�B(�)
r  exists and is finite, we say that � is differentiable from 

the right at 	. The value of the above right limit is denoted by v �′(	) and 
is called the right derivative of � at 	. 
Similarly the left derivative w �′(	) can be defined. 
Note  

1. f is differentiable at x iff f is left differentiable and right differentiable at x 

and w �′(	) = v �′(	)     
2. If � is differentiable at every point of an open interval q then we say that � is differentiable on q.  
3. If f is defined on @
, dA, then � is said to be differentiable on @
, dA, if it is 
differentiable on (
, d), right differentiable at 
 and left differentiable at d. 
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Theorem 1.20 

If � is differentiable at 	 then � is continuous at 	. 
Proof  

Since � is differentiable at 	, we have limr→�
B(��r)�B(�)

r  exists and is finite. 

Now, �(	 + ℎ) − �(	) = ^B(��r)�B(�)
r _ ℎ. 

∴ limr→�@�(	 + ℎ) − �(	)A   = limr→� ^B(��r)�B(�)
r _ ℎ  

    = limr→�
B(��r)�B(�)

r limr→� ℎ  
    = �x(�) × 0 = 0. ∴ limr→� �(	 + ℎ) = �(	)  
∴ � is continuous at 	. 
Note: The converse of the above theorem is not true. (i.e.) A function � 
which is continuous at 	 need not be differentiable at 	.  
 

Example 24  

Consider �(	) = |	|. 
Solution lim�→� �(	) = lim�→�|	| = 0 = �(0)  
∴ � is continuous at 	 = 0. 
We note that  �(	) = 0 	    2� 	 > 0−	  2� 	 < 0 
∴ v �′(0) = limr→��

B(��r)�B(�)
r   

      = limr→��
B(r)�B(�)

r   

      = limr→� 3r��
r 4           (∵ ℎ > 0) 

      = 1  
Also w �x(0) = limr→��

B(r)�B(�)
r   

          = limr→� 3�r��
r 4           (∵ ℎ < 0) 

          = −1  ∴ v �′(0) ≠ w �x(0)  ∴ � is not differentiable at 	 = 0. 
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Example 25 

Consider �(	) = 02 + 	    2� 	 ≥ 02 − 	   2� 	 < 0  
Solution lim�→�� �(	) = lim�→�(2 + 	) = 2. 
lim�→�� �(	) = lim�→�(2 − 	) = 2. 

∴ lim�→� �(	) = 2 = �(0). 
∴ � is continuous at 	 = 0. 
Now, v �′(0) = limr→��

B(��r)�B(�)
r   

  = limr→��
B(r)�B(�)

r   

  = limr→�
��r��

r = 1  
Also, w �x(0)  = limr→��

B(r)�B(�)
r   

  = limr→�
(��r)��

r = −1  
∴ v �′(0) ≠ w �x(0)  ∴ � is not differentiable at 	 = 0. 
 

1.5 Algebra of derivatives 

Theorem 1.21 

Let �(	) = {(	) + |(	). Let {(	)  and |(	)  be differentiable at 	 . Then �(	) is also differentiable at 	 and ({ + |)x(	) = {x(	) + |x(	). 
Proof �(	) = {(	) + |(	)  
∴ �x(	) = limr→�

B(��r)�B(�)
r   

  = limr→� ^c(��r)�}(��r)�@c(�)�}(�)A
r _  

  = limr→� ^c(��r)�c(�)
r + }(��r)�}(�)

r _  
  = limr→� ^c(��r)�c(�)

r _ + limr→� ^}(��r)�}(�)
r _  

 = {x(	) + |x(	)  
 

Theorem 1.22 

Let {(	) be differentiable at 	 and ~ ∈ �. Then ~ {(	) differentiable at 	 
and (~{)x(	) = ~ {x(	) 
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Proof 

Let �(	) = ~ {(	). 
∴ �x(	) = limr→�

B(��r)�B(�)
r   

  = limr→�
� c(��r)� � c(�)

r   

  = ~ {x(	)  
Theorem 1.23 

Let �(	) = {(	)|(	) . Let {(	)  and |(	)  are differentiable, then �(	)  is 
also differentiable and ({|)x(	) = {(	)|x(	) + |(	){x(	). 
Proof 

�x(	)   = limr→�
B(��r)�B(�)

r   

 = limr→�
c(��r)}(��r)�c(�)}(�)

r   

 = limr→�
c(��r)}(��r)�c(��r)}(�)�c(��r)}(�)�c(�)}(�)

r   

 = limr→� {(	 + ℎ) ^}(��r)�}(�)
r _ + limr→� |(	) ^c(��r)�c(�)

r _  =
{(	)|x(	) + |(	){x(	). 
 

Note  

The above result can be extended to a product of n functions which are 

differentiable, as follows.  ({�, {�, … , {W)x = {�x {� … {W + {�{�x {9 … {W + ⋯ + {�{� … {W′ . 
This result can be proved by induction. 

 

Theorem 1.24 

Let �(	) = c(�)
}(�). Let {(	) and |(	) are differentiable and |(	) ≠ 0, then � 

is differentiable and 3c
}4x (	) = }(�)c�(�)�c(�)}�(�)

@}(�)A� . 

Proof 

  �x(	) = limr→�
B(��r)�B(�)

r   

 = limr→�
�
r ^c(��r)

}(��r) − c(�)
}(�)_  

 = limr→�
�
r ^}(�)c(��r)�}(��r)c(�)

}(��r)}(�) _  
 = limr→�

�
r ^}(�)c(��r)�}(�)c(�)�c(�)}(�)�}(��r)c(�)

}(��r)}(�) _  
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 = limr→�
�

}(��r)}(�) ^|(	) 3c(��r)�c(�)
r 4 − {(	) 3}(��r)�}(�)

r 4_  
 = }(�)c�(�)�c(�)}�(�)

@}(�)A�   

 

Using the algebra of derivatives we can derive the derivative of any 

differentiable function. 

1.6 Derivative of Standard functions 

Derivatives of some standard functions without proof 

Result 1: Let �(	) = ~ be a constant function. Then t�
t� = 0. 

Result 2:  
t

t� (sin 	) = cos 	. 
Result 3:  

t
t� (ocs 	) = − sin 	. 

Result 4:  
t

t� (	W) = e	W��. 
Result 5: 

t
t� (S�) = S�. 

Result 6: 
t

t� (log 	) = �
� . 

Result 7:  
t

t� (tan 	) = sec� 	 if 	 ≠ (2e + 1) m
� . 

Result 8: 
t

t� (sec 	) = sec 	 tan 	 if 	 ≠ (2e + 1) m
� . 

Result 9: 
t

t� (cosec 	) = − cosec 	 cot 	 if 	 ≠ e�. 
Result 10:  

t
t� (cot 	) = − cosec� 	 if 	 ≠ e�. 

 

Hyperbolic functions 

The hyperbolic functions are defined by  

sinh 	 = �
� (S� − S��)  

cosh 	 = �
� (S� + S��)  

The other hyperbolic functions tanh 	 , cosech 	 , sech 	  and coth 	  are 
defined in terms of sinh 	  and cosh 	  as in the case of circular 

trigonometric functions. 

Results 

1. cosh� 	 − sinh� 	 = 1. 
2. sinh 2	 = 2 sinh 	 cosh 	. 
3. cosh� 	 + sinh� 	 = cosh 2	. 
4. 1 − tanh� 	 = sech� 	. 
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5. 1 − coth� 	 = − cosech� 	. 
Result 11: 

t
t� (sinh 	) = cosh 	. 

Result 12: 
t

t� (cosh 	) = sinh 	. 
Result 13: 

t
t� (tanh 	) = sech� 	 

Result 14: 
t

t� (sech 	) = − sech 	 tanh 	 
Result 15: 

t
t� (cosech 	) = − cosech 	 coth 	 

Result 16: 
t

t� (coth 	) = − cosech� 	 
 

1.7 The chain rule for differentiation 

Theorem 1.25 

Let �: @
, dA → @~, �A  and ?: @~, �A → @S, �A  be two continuous functions. 
Suppose �  is differentiable at 	 ∈ (
, d)  and ?  is differentiable at u =�(	) ∈ (~, �) , then ? ∘ �  is differentiable at x and (? ∘ �)′(	) =?x\�(	)]�x(	). 
Proof 

We have to prove that limr→�
(D∘B)(��r)�(D∘B)(�) 

r  exists and is equal to 

?x\�(	)]�x(	). 
Now, 

(D∘B)(��r)�(D∘B)(�) 
r = ^(D∘B)(��r)�(D∘B)(�) 

B(��r)�B(�) _ ^B(��r)�B(�) 
r _   

Let �(	 + ℎ) = u + * and �(	) = u. 
Since � is continuous, * → 0 as ℎ → 0. 
Now, 

(D∘B)(��r)�(D∘B)(�) 
r = ^D(b�,)�D(b) 

, _ ^B(��r)�B(�) 
r _ 

Taking limit as ℎ → 0(* → 0) and using the fact that � is differentiable at 	 
and ? is differentiable at �(	) we get (? ∘ �)′(	) = ?x\�(	)]�x(	).  
 

Example 26 

Find the derivatives of the following functions w. r. t. 	. 
1.  sin 2	                        2. sin� 	                               3. sin 	�                  
4. sin √	                         5.√sin 	                               6. �\sin √	]            
7. sin(sin 	)                   8. sin\sin √	]                     9. sin(log 	)           
10. log(sin 	)        11. SOPQ �                  12. sin S�                   13. sin 	° 
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Solution 

1. Let u = sin 2	 
    Let �(	) = 2	 and ?(	) = sin 	. 
    ∴ tb

t� = ?x\�(	)]�x(	) = (cos 2	)2 = 2 cos 2	. 
2. Let u = sin� 	. 
    ∴ tb

t� = 2 sin 	 cos 	 = sin 2	. 
3. Let u = sin(	�) 
    ∴ tb

t� = cos(	�)  2	 = 2	 cos(	�)  
4. Let u = sin √	 
    ∴ tb

t� = cos √	 3 �
�√�4 = �

�√� cos √	  
5. Let u = �(sin 	) 
    ∴ tb

t� = �
��(OPQ �) cos 	 = opO �

��(OPQ �). 

6. Let u = �\sin √	] 
    ∴ tb

t� = �
��\OPQ √�] cos √	 3 �

�√�4. 
7. Let u = sin(sin 	) 
    ∴ tb

t� = cos(sin 	) cos 	. 
8. Let u = sin\sin √	] 
    ∴ tb

t� = cos\sin √	] cos √	 3 �
�√�4. 

9. Let u = sin(log 	)   
    ∴ tb

t� = cos(log 	) �
� = opO(Xp� �)

�  . 
10. Let u = log(sin 	)   
      ∴ tb

t� = 3 �
OPQ �4 cos 	 = cot 	. 

11. Let u = SOPQ �  
      ∴ tb

t� = SOPQ � cos 	. 
12. Let u = sin S� 
      ∴ tb

t� = cos S� (S�) = S� cos S� . 
13. Let u = sin 	° = sin 3 m�

���4 
      ∴ tb

t� = cos 3 m�
���4 3 m

���4  
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        = 3 m
���4 cos 	°  

Note 

A function �(	) is called an odd function if �(	) = −�(	) and �(	) is called an even function if �(−	) = �(	). We can prove that the 

derivative of an even function is an odd function and the derivative of an 

odd function is an even function. 

 

1.8 Differentiation of inverse function 

Theorem 1.26 

Let � be a continuous one-one function defined on an interval and let � be 
differentiable at 	 and �x(	) ≠ 0. Let ? be the inverse of the function �. 
Then ? is differentiable at �(	) and ?x\�(	)] = �

B�(�) . 
Proof 

Let �(	) = u.                                                                                    (1)                                           ∴ By the definition of inverse function ?(u) = 	                             (2)                                                                  
Let u + * be any point in the domain of ?. 
Since � is 1-1 there exists a unique point say, 	 + ℎ different from 	 such 
that  �(	 + ℎ) = u + *                                                                              (3)                                                                                            ∴ ?(u + *) = 	 + ℎ                                                                          (4)                                                                
∴ D(b�,)�D(b)

, = (��r)��
B(��r)�B(�)                      (by 1, 2, 3, 4 ) 

           = �
3�(Z��)��(Z)� 4                                                                (5)                                                                          

Since � and g are continuous, as * → 0, we have ℎ → 0. Now, taking limit 

as ℎ → 0 in (5) and using the fact that �x(	) ≠ 0 we get ?x(u) = �
B�(�) 

∴ ?x\�(	)] = �
B�(�) . 

 

Result 17  t
t� (sin�� 	) = �

����� for all 	 ∈ (1, −1). 
Proof 

sin 	 is a 1-1 map from ^− �
� �, �

� �_ onto @−1, 1A. 
∴ sin�� 	 is defined on @−1, 1A. 
By the definition of inverse function u = sin�� 	 ⇔ 	 = sin u. 
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Let 	 ∈ (1, −1). Hence u ∈ 3− �
� �, �

� �4 
Now 

t
t� (sin�� 	) = ����(OPQ b) 

       = �
opO b  

       = �
±�(��OPQ� b)  

       = �
�(����)    �∵ cos u > 0 2e 3− �

� �, �
� �4�   

Similarly we can derive the following results. 

Result 18: 
t

t� (cos�� 	) = − �
�����  for all 	 ∈ (−1, 1) 

 

Result 19:  
t

t� (tan�� 	) = �
����  for all 	 ∈ �. 

 

Result 20: 
t

t� (cot�� 	) = − �
����  for all 	 ∈ �. 

 

Result 21: 
t

t� (sec�� 	) = �
|�|�(����)  for all 	 ∈ (−∞, −1) ∪ (1, ∞). 

 

Result 22: 
t

t� (cosec�� 	) = − �
|�|�(����) for all 	 ∈ (−∞, −1) ∪ (1, ∞). 

Result 23: 
t

t� (sinh�� 	) = �
�(����)  for all 	 ∈ �. 

 

Result 24: 
t

t� (cosh�� 	) = �
�(����)  for all 	 ∈ (−1, 1). 

 

Result 25: 
t

t� (tanh�� 	) = �
����  for all 	 ∈ (−1, 1). 

Result 26: 
t

t� (sech�� 	) = �
� �(����)  for all 	 ∈ (−1, 0) ∪ (0, 1). 

 

Result 27: 
t

t� (cosech�� 	) = �
|�|�(����)  for all 	 ∈ � − (�). 

 

Example 27 

Find the derivatives of the following w.r.t 	. 
1. sin��(2	)                      2. sin��\√	]                  3.  (sin�� 	)�            
4. sin��(	�)                      5. �(sin�� 	)                 6. sin�� �

�                 
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7. sin��(S�)                      8. sin��(log 	)               9. sin��(sinh�� 	) 
Solution 

1. Let u = sin��(2	) 
∴ tb

t� = � �
���(��)�� 2 = �

�(��5��) . 
2. Let u = sin��\√	] 
∴ tb

t� = �
���(��)� 3 �

�√�4 = �
� �(����)  

3. Let u = (sin�� 	)� 
∴ tb

t� = � OPQ�8 �
�(����)  

4. Let u = sin��(	�) 
∴ tb

t� = �
�@��(��)�A (2	) = ��

�(����)  
5. Let u = �(sin�� 	) 
∴ tb

t� = �
��(OPQ�8 �)

�
�(����)  

6. Let u = sin�� �
� ∴ tb

t� = �
�^��3 8Z�4_ 3− �

��4 = − �
� �(����)   

7. Let u = sin��(S�) 
∴ tb

t� = �
�@��(�Z)�A (S�) = �Z

�(����Z)  
8. Let u = sin��(log 	) 
∴ tb

t� = �
�@��(Xp� �)�A 3�

�4  
9. Let u = sin��(sinh�� 	) 
∴ tb

t� = �
�@��(OPQ��8 �)�A  �

�(����). 
 

Example 28 

If u = SU OPQ�8 � prove that (1 − 	�)u�� = 
�u�. 
Solution 

u = SU OPQ�8 �  
∴ u� = \SU OPQ�8 �] &

�(����)  
∴ u��(1 − 	�) = 
 S& OPQ�8 � = 
u. ∴ (1 − 	�)u�� = 
�u�.  
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1.9 Differentiation of transformations 

 Sometimes a function can be simplified by suitable substitution 

and hence the differentiation becomes easier. 

Example 29 

Differentiate sin�� 3 ��
����4  w. r. t. 	. 

Solution 

Let u = sin�� 3 ��
����4 

Put 	 = tan L 
Then u = sin�� 3 � TUQ I

��TUQ� I4 
  = sin��(sin 2L)  
  = 2L  
  = 2 tan�� 	   
∴ tb

t� = �
����  

 

Example 30 

u = tan�� 3 ��
����4 + tan�� 39���[

��9��4 − tan�� 3 5��5�[
��a�����4  show that tb

t� = �
���� 

Solution 

Put 	 = tan L 
Then, tan�� 3 ��

����4 = tan��(tan 2L) = 2L. 
tan�� 39���[

��9��4 = tan��(tan 3L) = 3L. 
tan�� 3 5��5�[

��a�����4 = tan��(tan 4L) = 4L. 
∴ u = 2L + 3L − 4L = L. 
      = tan�� 	. 
∴ tb

t� = �
���� . 

 

1.10 Logarithmic differentiation 

 When a function is a product of a number of factors it is 

convenient to take logarithm before differentiation. Also when a function 

is of the form {} where { and | are both functions of 	 it is necessary to 
take logarithm and then differentiate. This process is known as logarithmic 

differentiation. 
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Example 31 

Find the derivative of  {} where { and | are functions of 	. 
Solution 

Let u = {}. ∴ log u = | log {. 
Differentiating w. r. t. 	 we get �b tb

t� = c
}

tc
t� + log { t}

t�. 
∴ tb

t� = {} ^}
c  {x + |x log {_. 

 

Example 32 

Find u′ if u = 	OPQ � 
Solution log u = sin 	 log 	. 
∴ �

b
tb
t� = sin 	 3�

�4 + log 	 cos 	. 
∴ tb

t� = 	OPQ � ^OPQ �
� + log 	 cos 	_. 

 

Example 33 

Find u′ if u = 	� + 	8Z. 
Solution 

Let u = { + | where { = 	�  and | = 	8Z. 
∴ tb

t� = tc
t� + t}

t� . 
Now, { = 	� . ∴ log { = 	 log 	. 
∴ �

c
tc
t� = 	 3�

�4 + log 	. 
∴ tc

t� = 	�(1 + log 	). 
Also | = 	8Z . 
∴ log | = 3�

�4 log 	. 
∴ �

}
t}
t� = �

� 3�
�4 + log 	 3− �

�4. 
∴ t}

t� = 	8Z 3��Xp� �
�� 4  

∴ tb
t� = 	�(1 + log 	) + 	8Z 3��Xp� �

�� 4. 
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Example 34 

If u = 	�Z
 prove 

tb
t� = u	� 3�

� + log 	 + log� 	4. 
Solution 

Let u = 	�Z
. ∴ log u = 	� log 	                                                                              (1)                                                                             ∴ log(log u) = 	 log 	 + log(log x). 

∴ �
Xp� b

�
b

tb
t� = �

� + log 	 + �
Xp� � 3�

�4. 
∴ tb

t� = u log u 31 + log 	 + �
� Xp� �4. 

        = u	� log 	 31 + log 	 + �
� Xp� �4.                                    ( by (1)) 

        = u	� 3�
� + log 	 + log� 	4. 

 

Example 35 

If  	�u� = (	 + u)���  prove that  	 tb
t� = u. 

Solution 	�u� = (	 + u)��� . ∴   log 	 + ¡ log u = (  + ¡) log(	 + u). 
Differentiating w. r. t. 	. we get 
�
� + �

b 3t}
t�4 = 3���

��b4 31 + tb
t�4. 

∴ tb
t� 3�

b − ���
��b4 = ���

��b − �
� . 

∴ tb
t� ^����b��b��}

b(��b) _ = ����������b
�(��b)   

∴ tb
t� = 3b

�4 ^����������b
����b��b��b_ = 3b

�4 ^����b
����b_. 

        = b
�. ∴ 	 tb

t� = u. 
 

1.11 Parametric Differentiation 

Differentiation of functions represented in terms of a parameter 

Let 	 = �(¢) and u = ?(¢) where ¢ is a parameter.  

Then by chain rule. 

tb
t� = tb

t£
t£
t� = t\D(£)]

t£ ÷ t\B(£)]
t£  . 
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Example 36 

Find u′ if 	 = 
 cos9 ¢ , u = 
 sin9 ¢. 
Solution 

tb
t� = ��¥\& OPQ[ £]

��¥(& opO[ £)  
     = 9& OPQ� £ opO £

�9& opO� £ OPQ £ . 
     = − tan ¢. 
 

Example 37 

If 	 = 
(L + sin L) and u = 
(1 − cos L) prove that ux = tan 3I
�4. 

Solution 

tb
t� = ��¦@&(��opO I)A

��¦@&(I�OPQ I)A . 

    = & OPQ I
&(��opO I) = � OPQ3¦�4 opO3¦�4

� opO�3¦�4  . 

    = tan 3I
�4. 

 

1.12 Differentiation of a function with respect to another function 

 Let u = �(	) and § = ?(	) be two functions both of which have 
derivatives. To find the differential coefficient of � w. r. t ?. We treat 	 as a 
parameter and we have  

tb
t¨ = tB

tD = 3���Z4
3�©�Z4  

 

Example 38 

Differentiate S� w. r. t. log 	. 
Solution 

Let u = S� and § = log 	. 
∴ tb

t¨ = ��Z(�Z)
��Z(Xp� �)  

        = �Z
8Z
. 

        = 	 S�. 
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Example 39 

Find the derivative of 	OPQ � w. r. t. (sin 	)� . 
Solution 

Let � = 	OPQ � and ? = (sin 	)� . 
∴ tB

tD = ª ���Z�©�Z
«. 

Now, log � = sin 	 log 	. 
∴ �

B 3tB
t�4 = OPQ �

� + cos 	 log 	. 
∴ tB

t� = 	OPQ � ^OPQ �
� + cos 	 log 	_. 

Now, ? = (sin 	)� . ∴ log ? = 	 log sin 	. 
∴ �

D
tD
t� = 	 cot 	 + log sin 	. 

∴ tD
t� = (sin 	)�@	 cot 	 + log sin 	A. 

∴ tB
tD = �¬® Z

(OPQ �)Z ^ OPQ ��� opO � Xp� �
�(� opT ��Xp� OPQ �)_. 

 

1.13 Differentiation of implicit functions 

 So far we have considered differentiation of functions in which 

the dependent variable u  is expressed explicitly in terms of the 

independent variable 	. In this section we shall consider functions of two 
variables 	 and u given by �(	, u) = 0. We differentiate the function itself 

and find 
tb
t� .  

 

Example 40 

Find u′ if 	9 + u9 = 3 
	u. 
Solution 	9 + u9 = 3 
	u. 
Differentiating both sides w. r. t. 	. We get 3	� + 3u�ux = 3
(	ux + u). ∴ ux(3u� − 3
	) = 3
u − 3	�. 
∴ ux = &b���

b��&�. 
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Example 41 

If 	b = S��b prove that tb
t� = Xp� �

(��Xp� �)� . 
 

Solution 	b = S��b. ∴ u log 	 = 	 − u. ∴ u(1 + log 	) = 	. 
∴ u = �

��Xp� � . 
∴ tb

t� = (��Xp� �)��38Z4
(��Xp� �)�  . 

        = Xp� �
(��Xp� �)� . 

 

Example 42 

Find u′ if u = (sin 	)b. 
Solution u = (sin 	)b. ∴ log u = u log sin 	. 
�
b 3tb

t�4 = u 3opO �
OPQ �4 + (log sin 	) 3tb

t�4. 
∴ tb

t� = b� opT �
��b Xp� OPQ � . 

 

Example 43 

If 	b = u�  prove that tb
t� = b(b�� Xp� b)

�(��b Xp� �) . 
Solution 	b = u� . ∴ u log 	 = 	 log u. 
Differentiating w. r. t. 	 on both sides we get 
b
� + log 	 3tb

t�4 = �
b 3tb

t�4 + log u. 
∴ tb

t� 3log 	 − �
b4 = log u − 3b

�4. 
∴ tb

t� = b(� Xp� b�b)
�(b Xp� ���). 

         = b(b�� Xp� b)
�(��b Xp� �). 
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1.14 Higher derivatives 

 Let u = �(	) be a function which is differentiable over an interval . Then its derivative u� is also a function 	. 
 If u�  is differentiable w. r. t. 	  then its derivative is called the 
second derivative of u  w. r. t. 	  and is denoted by t�b

t��  or u(�)  or u� . 
Generally if we can successively differentiate the function u = �(	) w. r. t. 
	 e times, then the result is denoted by 

t¯b
t�¯  or u(W) or uW and it is called 

the nth derivative of u w. r. t. 	 
 

Example 44 

If u = 	� sin 
	 find u� and u�. 
Solution u = 	� sin 
	. ∴ u� = 	�(
 cos 
	) + 2	 sin 
	. 
        = 
	� cos 
	 + 2	 sin 
	. ∴ u� = 
	�(−
 sin 
	) + 2 
	 cos 
	 + 2	(
 cos 
	) + 2 sin 
	. 
        = (2 − 
�	�) sin 
	 + 4 
	 cos 
	. 
 

Example 45 

If u = S�� cos 	 prove that u5 + 4 u = 0. 
Solution u = S�� cos 	   ∴ u� = −S�� cos 	 + S��(− sin 	) = −S��(cos 	 + sin 	)  ∴ u� = −@S��(− sin 	 + cos 	) − (cos 	 + sin 	)S��A  
        = −S��(−2 sin 	) = 2S�� sin 	   ∴ u9 = 2@S�� cos 	 − S�� sin 	A = 2S��(cos 	 − sin 	)  ∴ u5 = 2@−S��(cos 	 − sin 	) + S��(− sin 	 − cos 	)A  
        = −2S��(2 cos 	) = −4S�� cos 	 = −4u  ∴ u5 + 4 u = 0. 
 

Example 46 

If u = S& OPQ�8 �  prove (1 − 	�)u� − 	u� − 
�u = 0. 
Solution 

u = S& OPQ�8 � . 



29 

Differential and integral calculus 

∴ u� = &�° ¬®�8 Z
�(����)  . 

∴ �(1 − 	�) u� = 
 u. ∴ (1 − 	�) u�� = 
� u�. 
Now, differentiating again w. r. t. 	, we get (1 − 	�) 2u�u� − 2	u�� = 2
� u u�. ∴ (1 − 	�)u� − 	u� − 
�u = 0. 
 

Example 47 

If u = ^	 + �(1 + 	�)_E
, prove that (1 − 	�)u� + 	u� − >�u = 0. 

Solution 

u = ^	 + �(1 + 	�)_E
. 

∴ u� = > ^	 + �(1 + 	�)_E�� �1 + ��
��(����)�. 

         = > ^	 + �(1 + 	�)_E�� ���(����)���
��(����) �.  

         = > ^	 + �(1 + 	�)_E�� ��(����)��
�(����) �. 

 ∴ u��(1 + 	�) = > ^	 + �(1 + 	�)_E
. 

∴ (1 + 	�) u�� = >�u�. 
Now, we differentiating again w. r. t. 	 we get  (1 + 	�)2 u�u� + 2	u�� = 2>�uu�. ∴ (1 − 	�)u� + 	u� − >�u = 0. 
 

Exercise 5 

1. If u = log �3��OPQ �
��OPQ �4 prove that tb

t� = sec 	. 
2. Prove that the function u = 	 S�  satisfies the equation 	ux = (1 − 	)u. 
3. Differentiate the following functions w. r. t. 	. 
     (i) S& OPQ g�                 (ii) SZ° + S�Z°               (iii) sinE 	 cosW 	     
     (iv)  log(log(log 	))   
4. If �(	) = �(1 + 	) find �(3) + (	 − 3)�x(3). 
5. If �(	) = tan 	 and ?(	) = log(1 − 	) find 3B�(�)

D�(�)4. 
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6. Prove that the function u = S�8���
 satisfies the equation 	ux =(1 − 	�)u. 

7. If u = log ��(����)��
�(����)��� prove that tb

t� = − �
�(����) . 

8. Differentiate the functions w. r. t. 	. 
    (i) cot��(log 	)                       (ii) tan�� ��(����)��

� �          
    (iii) tan�� (���)

(���)                       (iv) cot��(sinh 	) 
9. Find 

tb
t� if u = tan�� 0�(����)��(����)

�(����)��(����)± 
10. Differentiate the following w. r. t. 	. 
      (i) sin��(3	 − 4	)                      (ii) sin�� ^2	�(1 − 	�)_                          
      (iii) tan�� 3��opO �

��opO �48�
 

11. Differentiate (2	)� w. r. t. 	. 
12. Differentiate the functions w. r. t. 	. 
      (i) 2�            (ii) S�Z

         (iii) 	OPQ�8 �               (iv) 	� + (cot 	)�        
      (v) 	√�          (vi) 
��

        (vii) 3�
�48Z

  

13. If u = 
�b prove that  tb
t� = b� Xp� &

��Xp� b . 
14. Find 

tb
t�  if 

      (i) u = (sin 	)opO � + (cos 	)OPQ �                     
      (ii) u = (sin 	)TUQ � + (tan 	)OPQ �  
      (iii) u = 	� + 
�                             (iv) u = 	TUQ b + (sin 	)opO � 
15. If 	��� + u��� = 
   prove that tb

t� = − b²��b8�Z Xp� b��8�Z(��b)³
@b �8�Z� Xp� �� b8�Z(���)A . 

16. If u = 	��
 prove 

tb
t� = b� Xp� b

�(��b Xp� � Xp� b)� 
17. If u = (cos 	)b prove tb

t� = − b� TUQ �
��b Xp� opO � 

18. Find u′ for (sin 	)opO b = (cos u)OPQ �. 
19. If u = 	b prove that 	 tb

t� = b�
��b Xp� � . 

20. u = �(sin 	 + u) prove that tb
t� = opO �

�b�� 
21. If u = (sin 	)b prove that tb

t� = b� opT �
��b Xp� OPQ � 
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22. If (
 + d	)S�Z = 	 prove that 	9u� = (	u� − u)�. 
23. If u = 	�S&�, prove that  u� = S&�(
�	9 + 6
	� + 6	) 
24. If u = (sin�� 	)� prove that (1 − 	�)u� − 	u� + 2. 
25. If u = 
 cos(log 	) + d sin(log 	) prove that 	�u� + 	u� + u = 0. 
26. If u = tan(> tan�� 	) prove that (1 + 	�)u� = >(1 + u�). 
27. If u = Xp� �

�  prove that u� = � Xp� ��9
�[  

28. If u = (tan�� 	)� prove (1 + 	�)�u� + 2	(1 + 	�)u� = 2. 
Answers 

3. (i) 
d S& OPQ g�                                                         (ii) �Z/°���Z/°
&                

    (iii) sinE�� 	 cosW�� 	 (> cos� 	 − e sin� 	)       (iv) �
Xp�(Xp� �)� Xp� � 

4. 
�
5 + `

5                                 5.  −1. 
8. (i) − �

�(��Xp�� �)         (ii) 
�

�(����)           (iii) 
�

����           (iv) – sech 	 
9.  

�
�����                     

10. (i) 
9

�����                 (ii) 
�

�����                  (iii) − �
� 

11. (2	)�@1 + log 2	A       
12. (i) 2	 log 2                                  (ii) S�Z log S�Z @1 + log 	A      
      (iii) 	 sin�� 	 µOPQ�8 �

� + Xp� �
�����¶                     

      (iv) 	�@1 + log 	A + (cot 	)�@log cot 	 − 2	 cosec 	A    
      (v) 	√��8� − @1 + log 	A                 (vi) 
��@2	 log 
A                
      (vii) – 3�

�48Z 3�
�4 ^1 + log 3�

�4_    
14.(i) (sin 	)opO �@cos 	 cot 	 − sin 	 log sin 	A 
                            +(cos 	)OPQ �@cos 	 log(cos 	) − sin 	 tan 	A  
     (ii) (sin 	)TUQ �@1 + sec� 	 log(sin 	)A +(tan 	)OPQ �@sec 	 + cos 	 log 	 log(tan 	)A 
    (iii) 	�@1 + log 	A + 
� log 
 
    (iv) 

b
� ^TUQ b�� opT � opO ��� OPQ � Xp� OPQ �

��b O·o� b Xp� � _ 
18. ^opO � Xp� opO b�opO b opT �

OPQ � TUQ b�OPQ b Xp� OPQ � _. 
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1.15 ¸¹º Derivative and Leibnitz theorem 
1.15.1 ¸¹º Derivative of some standard functions 
Theorem 1.27 
t¯

t�¯ (
	 + d)E = >(> − 1)(> − 2) … (> + e − 1)
W(
	 + d)E�W  
Proof 

Let u = 
	 + d. ∴ u� = >(
	 + d)E��
 = 
>(
	 + d)E��. u� = >(> − 1)
�(
	 + d)E��  
…………………………………….. 

…………………………………….. uW = >(> − 1)(> − 2) … (> + e − 1)
W(
	 + d)E�W . 
 

Theorem 1.28 
t¯

t�¯ (
	 + d)W = e! 
W . 
Proof 

Put > = e in Theorem 1.27 to get the result. 

 

Theorem 1.29 
t¯

t�¯ 3 �
&��g4 = (��)¯W!&¯

(&��g)¯�8  
Proof 

Put > = −1 in Theorem 1.27 to get the result. 

 

Theorem 1.30 

t¯
t�¯ @log(
	 + d)A = (��)¯�8(W��)!&¯

(&��g)¯ . 

Proof 

Let u = log(
	 + d) ∴ u� = 
(
	 + d)��. 
From Theorem 1.29 we get uW = (��)¯�8(W��)!&¯

(&��g)¯ . 

 

Theorem 1.31 
t¯

t�¯ (S&�) = 
WS&� . 
Proof 

Let u = S&�. 
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∴ u� = 
 S&�  u� = 
�S&�  
…………….. 

…………….. uW = 
WS&� . 
 

Theorem 1.32 

t¯
t�¯ @sin(
	 + d)A = 
W sin �
	 + d + �

� (e�)�. 
Proof 

Let u = sin(
	 + d) 
∴ u� = 
 cos(
	 + d) = 
 sin 3
	 + d + �

� �4. 
u� = 
� cos 3
	 + d + �

� �4 = 
� sin �
	 + d + �
� (2�)�  

…………………………………………………………….. 

…………………………………………………………….. 

uW = 
W sin �
	 + d + �
� (e�)�. 

 

Theorem 1.33 

t¯
t�¯ @cos(
	 + d)A = 
W cos �
	 + d + �

� (e�)�. 
Proof 

Proof is similar to the Theorem 1.32 

 

Theorem 1.34 
t¯

t�¯ @S&� sin(d	 + ~)A = ¼WS&� sin(d	 + ~ + eL) where  
¼ = √
� + d� and L = tan��(d/
). 
Proof 

Let u = S&� sin(d	 + ~). ∴ u� = 
 S&� sin(d	 + ~) + d S&� cos(d	 + ~)  
Put 
 = ¼ cos L and d = ¼ sin L. 
∴ ¼ = √
� + d� and L = tan��(d/
). 
Also u� = ¼ S&�@sin(d	 + ~) cos L + cos(d	 + ~) sin LA 
  = ¼ S&� sin(d	 + ~ + L)  
Similarly u� = ¼�S&� sin(d	 + ~ + 2L) 
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     ……………………………………. 

     …………………………………….         uW = ¼WS&� sin(d	 + ~ + eL). 
∴ uW = ²√
� + d�³W sin@d	 + ~ + e tan��(d/
)A. 
 

Theorem 1.35 
t¯

t�¯ @S&� cos(d	 + ~)A = ¼WS&� cos@d	 + ~ + e tan��(d/
)A  where ¼ =
√
� + d� and L = tan��(d/
).         
Proof 

Proof is similar to that of Theorem 1.34 

 

Example 48 

Find uW if u = 9����
(���)�(����) 

Solution 

u = 9����
(���)�(����)  

Splitting into partial fractions we get  

u = �5
: 3 �

���4 + �
9 3 �

(���)�4 − �
: 3 �

(����)4  
∴ uW = �5

: ^ (��)¯W!
(���)¯�8_ + �

9 ^(��)¯(W��)!
(���)¯�� _ − �

: ^(��)¯�¯W!
(����)¯�8_. 

Example 49 

Find uW if u = sin 3	 cos 	. 
Solution u = sin 3	 cos 	. 
   = �

� (sin 4	 + sin 2	). 
∴ uW = �

� ^4W sin 34	 + �
� e�4 + 2W sin 32	 + �

� e�4 _. 
 

Example 50 

Find uW if u = log ���9
9��� 

Solution 

u = log ���9
9��� = log(2	 + 3) − log(3	 + 2)  

∴ uW = (��)¯�8(W��)!�¯
(���9)¯ − (��)¯�8(W��)!9¯

(9���)¯   
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        = (−1)W��(e − 1)! ^ �¯
(���9)¯ − 9¯

(9���)¯_.  
 

Exercise 6 

Find the nth differential coefficient of the following: 

1. 
9�

(����)(���)                      2. 
��

(���)(���)[                      3. cos� 	               
4. sin9 	                             5. sin 	 sin 2	 sin 3	          6. cos½ 	 sin9 	         
7.log(4 − 	�)                    8. S&� ~¾¿� d	                     9.S�� cos 4	  
Answers 

1. (−1)We! ^ �
(���)¯�8 + �¯

(����)¯�8_                  
2. (−1)W��e! �

� (e + 1)(e + 2)(	 − 1)�W�9 + 3(e + 1)(	 − 1)�W�� +
4(	 − 1)�W�� − 4(	 − 2)�W�� 
3. 2W�� cos 32	 + �

� e�4             
4. 

9
5 sin 3	 + �

� e�4 − 9¯
5 sin 33	 + �

� e�4 
5. 

�
5 ^2W sin 32	 + �

� e�4 + 4W sin 34	 + �
� e�4 − 6W sin 36	 + �

� e�4_ 
6. – ^��¯ OPQ3����8�Wm4�5(�¯) OPQ3���8�Wm4��5(�¯) OPQ3���8�Wm4_

��À  

7. (e − 1)! @(−1)W��(2 + 	)�W − (2 − 	)�WA 
8. 

�
� ^
WS&� + (
� + 4d�)�̄  S&� cos 2d	 + e tan�� 3�g

& 4_ 
9. √20 S�� cos(4	 + e tan�� 2) 
 

1.15.2 Leibnitz’s Theorem 

 We now prove Leibnitz’s Theorem on nth differential coefficient 

of the product of two functions. 

 

Theorem 1.36 (Leibnitz’s Theorem) 

 If u and v are functions of x possessing derivatives of nth order, 

then  ({|)W = {|W + eÁ�{�|W�� + eÁ�{�|W�� + ⋯ + eÁÂ{Â|W�Â + ⋯ + eÁW{W|  
Proof 

We prove this theorem by induction on n. 

We note that ({|)� = t
t� ({ |) = {|� + {�|. 

Thus the theorem is true for e = 1. 
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Now, let us assume that the theorem is true for e = >. ∴ ({|)E = {|E + >Á�{�|E�� + ⋯ + >ÁÂ��{Â��|E�Â��  
                                                         +>ÁÂ{Â|E�Â + ⋯ + >ÁE{E|  
Differentiating both sides with respect to 	 we get, ({|)E�� = {|E�� + {�|E + >Á�@{�|E + {�|E��A + ⋯ +  

                   >ÁÂ��@{Â��|E�Â�� + {Â|E�Â��A + >ÁÂ@{Â|E�Â�� +{Â��|E�ÂA + ⋯ + >ÁE@{E|� + {E��|A  = {|E�� + {�|E + >Á�{�|E + >Á�{�|E�� + ⋯  

   +>ÁÂ��{Â��|E�Â�� + >ÁÂ��{Â|E�Â�� + >ÁÂ{Â|E�Â��  
                + >ÁÂ{Â��|E�Â + ⋯ + >ÁE{E|� + >ÁE{E��|  = {|E�� + (1 + >Á�){�|E + @>Á� + >Á�A{�|E�� + ⋯  

                     +@>ÁÂ�� + >ÁÂA{Â|E�Â�� + ⋯ + >ÁE{E��|. 
Now we can use these equations >ÁE = 1, >Á� = 1 and >ÁÂ + >ÁÂ�� =(> + 1)ÁÂ and reduce the above equation is ({|)E�� = {|E�� + (> + 1)Á�{�|E + (> + 1)Á�{�|E�� + ⋯  

                    +(> + 1)ÁÂ{Â|E�Â�� + ⋯ + (> + 1)ÁE��{E��|  ∴ The theorem is true for e = > + 1. 
Hence the theorem is true for all e ∈ Ã. 

 

Example 51 

If u = 	�S&� find uW . 
Solution 

Let u = {| where { = 	� and | = S&� . ∴ By Leibnitz’s theorem uW = 	�(S&�)W + eÁ�(	�)�(S&�)W�� + ⋯  

     = 	�(
WS&�)W + eÁ�(2	)(
W��S&�) + eÁ�(2)(
W��S&�)  
     = 
W��S&�@
�	� + 2
e	 + e(e − 1)A. 
 

Example 52 

If u = 
 cos(log 	) + d sin(log 	)  prove that 	�u� + 	u� + u = 0 . Hence 
prove that 	�uW�� + (2e + 1)	uW�� + (e� + 1)uW = 0. 
Solution u = 
 cos(log 	) + d sin(log 	). 
Differentiating w. r. t. 	 we get u� = − & OPQ(Xp� �)

� + g opO(Xp� �)
�  

∴ 	u� = −
 sin(log 	) + d cos(log 	). 
Differentiating w. r. t. 	 again we get 
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	u� + u� = − & opO(Xp� �)
� − g OPQ(Xp� �)

�   

     = − �
� @
 cos(log 	) + d sin(log 	)A  

     = − b
�. ∴ 	�u� + 	u� + u = 0  

Using Leibnitz’s theorem for nth derivative we get @	�uW�� + eÁ�(2	)uW�� + eÁ�(2)uWA + @	uW�� + eÁ�uWA + uW = 0. ∴ 	�uW�� + (2e	 + 	)uW�� + @e(e − 1) + e + 1AuW = 0. ∴ 	�uW�� + (2e + 1)	uW�� + (e� + 1)uW = 0. 
 

Example 53 

If u = \	 + √1 + 	�]E
 prove that (1 + 	�)uW�� + (2e + 1)	uW�� +(e� − >�)uW = 0. 

Solution 

u = \	 + √1 + 	�]E
  

∴ u� = >²	 + √1 + 	�³E�� �1 + ��
�������  

∴ u�√1 + 	� = >²	 + √1 + 	�³E
  ∴ (1 + 	�) u�� = >�u�. 

Now, we differentiating again w. r. t. 	 we get  (1 + 	�)2 u�u� + 2	u�� = 2>�uu�. ∴ (1 − 	�)u� + 	u� − >�u = 0. 
Differentiating n times using Leibnitz’s theorem we get @(1 + 	�)uW�� + eÁ�(2	) + eÁ�uW(2)A + @	uW�� + eÁ�uWA − >�uW = 0. ∴ (1 + 	�)uW�� + (2e + 1)	uW�� + @e(e − 1) + e − >�AuW = 0. ∴ (1 + 	�)uW�� + (2e + 1)	uW�� + (e� − >�)uW = 0. 
 

Exercise 7 

1. Find the nth derivative of the following: 

    (i) 	9S&�           (ii) 	WS�           (iii) 	� cos 	              (iv) 	9
�   
2. If u = S& OPQ�8 �  prove that (1 − 	�)u� − 	u� − 
�u = 0. Hence prove 
that (1 − 	�)uW�� − (2e + 1)	uW�� − (e� + 
�)uW = 0 
3. If u = cos(log 	)  prove that (1 − 	�)	�uW�� + (2e + 1)	uW�� +(e� + 1)uW = 0. 
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4. If u = (1 − 	)&S&�  prove that u�(1 − 	) + 
	u = 0. Hence deduce that (1 − 	)uW�� − (e + 
	)uW − e
uW�� = 0. 
5. If u = (	� − 1)W prove that (	� − 1)uW�� − 2	uW�� − e(e + 1)uW = 0. 
Answers 

1. (i) 
W�9S&�@
9	� + 3e
�	� + 3e(e − 1)
	 + e(e − 1)(e − 2)A 
    (ii) S� ^	W + W�

�! 	W�� + W�(W��)�
�! + ⋯ + W�(W��)�…��

W! _ 
    (iii) 	� cos 3	 + �

� e�4 + 2e� cos ^	 + �
� (e − 1)�_ 

                            +e(e − 1) cos ^	 + �
� (e + 2)�_. 

   (iv) 
�(log 
)W��@	�(log 
)� + 2e	 log 
 + e(e − 1)A. 
 

1.16 Partial Differentiation 

 In a real valued function of several variables we assign fixed 

values to all but one of the variables and allow only that variable to vary, 

then the function virtually becomes a function of one variable. 

For example, consider the function § = �(	, u) = 	� + 2	 + u�. If we fix 
the value 2 to u then § = �(	, 2) = 	� + 2	 + 4 is a function of the single 
variable 	. If we differentiate this function with respect to x at 	 = 1. We 

obtain the partial derivative of �(	, u) w. r. t. 	 at (1, 2). 
We now give the normal definition of partial derivatives. 

Definition  

Let § = �(	, u)  be a function of two variables. If 

limr→� ^B(�8�r,b8)�B(�8,b8)
r _ exists and is finite we say that the partial derivative 

of � w. r. t. 	 at (	�, u�) exists and its value is given by the above limit. We 

denote this by 
Ä¨
Ä�  at (	�, u�)  or ��(	�, u�)  or Å��(	�, u�)  or Å��(	�, u�) . 

Thus we have 

 
Ä¨
Ä� = limr→� ^B(�8�r,b8)�B(�8,b8)

r _  
Similarly the partial derivative of �(	, u) w. r. t. u at (	�, u�) is defined as  
 

Ä¨
Äb = lim,→� ^B(�8,b8�,)�B(�8,b8)

, _  
If it exists and is finite and it is also denoted by �b(	�, u�) or Åb�(	�, u�) or Å��(	�, u�). 
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Note  

 If we have a function of e independent variables we can define as 
above, the partial derivative w. r. t. any one of the variables. 

 If § = �(	, u) posses a partial derivative w. r. t. 	 at every point of 
its domain, then we get a new function 

Ä¨
Äb . This function is also a function 

of 	 and u which may be differentiated w. r. t. either of the independent 

variables, thus giving partial derivatives of higher order. We have 
Ä

Ä� 3ÄB
Ä�4 ; Ä

Äb 3ÄB
Äb4 ; Ä

Äb 3ÄB
Ä�4 ; Ä

Ä� 3ÄB
Äb4  which are also denoted by 

Ä�B
Ä�� ;  Ä�B

Äb� ;  Ä�B
ÄbÄ� ;  Ä�B

Ä�Äb or ���; �bb; ��b; �b� respectively. 
 Thus we have four second order partial derivatives. The other 

higher order partial derivatives can similarly be defined. 

 

Example 54 

If { = log(tan 	 + tan u + tan §),  show that sin 2	 Äc
Ä� + sin 2u Äc

Äb +
sin 2§ Äc

Ä¨ = 2. 
Solution { = log(tan 	 + tan u + tan §). 
∴ Äc

Ä� = O·o� �
TUQ ��TUQ b�TUQ ¨  

∴ sin 2	 Äc
Ä� = � TUQ �

TUQ ��TUQ b�TUQ ¨  
∴ sin 2	 Äc

Ä� + sin 2u Äc
Äb + sin 2§ Äc

Ä¨ = � TUQ ��� TUQ b�� TUQ ¨
TUQ ��TUQ b�TUQ ¨ = 2. 

 

Example 55 

If � = 	9 + u9 + §9 + 3	u§ find (i) ��  (ii) ���  (iii) ��b¨ 
Solution � = 	9 + u9 + §9 + 3	u§  ∴ �� = 3	� + 3u§  
∴ ��� = Ä

Ä� (3	� + 3u§) = 6	  
∴ ��b = Ä

Äb (3	� + 3u§) = 3§  
∴ ��b¨ = Ä

Ä¨ \��b] = Ä
Ä¨ (3§) = 3   
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Example 56 

If { = �(	 − u, u − §, § − 	) prove that Äc
Ä� + Äc

Äb + Äc
Ä¨ = 0. 

Solution { = �(	 − u, u − §, § − 	). 
Put Ç = u − §         ∴ ÄÈ

Ä� = 0; ÄÈ
Äb = 1; ÄÈ

Ä¨ = −1                               (1)                                                     
Put É = § − 	         ∴ ÄÊ

Ä� = −1; ÄÊ
Äb = 0; ÄÊ

Ä¨ = 1                                (2)                                                  
Put Ë = 	 − u         ∴ ÄÌ

Ä� = 1; ÄÌ
Äb = −1; ÄÌ

Ä¨ = 0                                (3)                                                                
Now, { = �(Ç, É, Ë) where Ç, É, Ë are functions of 	, u and §. 
∴ Äc

Ä� = Äc
ÄÈ

ÄÈ
Ä� + Äc

ÄÊ
ÄÊ
Ä� + Äc

ÄÌ
ÄÌ
Ä�  

        = − Äc
ÄÊ + Äc

ÄÌ                                               [ using (1)] 
Similarly, 
Äc
Äb = − Äc

ÄÌ + Äc
ÄÈ and  Äc

Ä¨ = − Äc
ÄÈ + Äc

ÄÊ. ∴  Äc
Ä� + Äc

Äb + Äc
Ä¨ = 0  

 

Exercise 8 

1. If { = 	�u§ + 	u�§ + 	u§�  prove that 	 Äc
Ä� + u Äc

Äb + § Äc
Ä¨ =

4	u§(	 + u + §). 
2. If   = ¡�¼� prove that Ä��

Ä�� × Ä��
Ä�� = 4 . 

3. If { = S�b prove that Ä�c
Ä�� + Ä�c

Äb� = { µ3Äc
Ä�4� + 3Äc

Äb4�¶. 
4. If { = log(	� + u� + §�) prove that Ä�c

Ä�� + Ä�c
Äb� + Ä�c

Ä¨� = �
���b��¨� . 

5. If { = 
	 + 6u + 8§ and Äc
Ä� + Äc

Äb + Äc
Ä¨ = 0 find 
. 

Answer 

5. −14. 
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1.17 Euler’s Theorem 

Homogeneous function and Euler’s theorem  

 For simplicity, definition and theorems in this section will be 

given for functions of two variables only. Extension to functions of e 
variables is immediate. 

 

Definition 

Consider the polynomial �(	, u) = 
�	W + 
�	W��u +
�	W��u� + ⋯ + 
WuW . Here the degree of each term is e. We say that � is 
a homogeneous function of degree e.  

We now extend the notion of homogeneity to functions other 

than polynomials. 

A function �(	, u)  is said to be homogeneous of degree e  if �(Î	, λu) = ÎW�(	, u) for all Î. 
 

Example 57 �(	, u) = 	9 + u9 + 3	�u is a homogeneous function of degree 3. 

Solution 

For, �(Î	, λu) = Î9	9 + Î9u9 + 3Î�	�Îu   
  = Î9(	9 + u9 + 3	�u)  
  = Î9�(	, u). 
 

Example 58 

�(	, u) = (	� + 4u�)�8[ is a homogeneous function of  degree − �
9. 

 

Example 59 

�(	, u) = sin 3��b
��b4 is a homogeneous function of degree 0. 

Note  �(	, u) = 	� + 	 − u is not a homogeneous function. 

 

Theorem 1.37 (Euler’s Theorem) 

 Let �(	, u) be a homogeneous function of degree e having first 
order partial derivatives in a domain D of �Ð. 
 Then 	 ÄB

Ä� + u ÄB
Äb = e �(	, u) for all (	, u) ∈ Å. 
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Proof  

Since �(	, u) is a homogeneous function of degree e we have �(Î	, λu) =ÎW�(	, u). 
Differentiating both sides w. r. t Î we have 	 ��(Î	, λu) + u �b(Î	, λu) = e ÎW���(	, u). 
Putting Î = 1 we have 	 ��(	, u) + u �b(	, u) = e �(	, u). 
(i.e.) 	 ÄB

Ä� + u ÄB
Äb = e �(	, u). 

 

Theorem 1.38 (Extension of Euler’s Theorem) 

 If �(	, u) is a homogeneous function of degree e then 	���� +2	u ��b + u��bb = e(e − 1)�. 
Proof 

By Euler’s theorem we have 	 �� + u �b = e�                                 (1) 
Differentiating (1) w. r. t. 	 and u we get 	 ��� + �� + u �b� = e��                                                                   (2) 	 ��b + �b + u �bb = e�b                                                                   (3) 
Multiplying (2) by 	 and (3) by u and adding we get  	���� + 2	u ��b + u��bb + \	 �� + u �b] = e\	 �� + u �b]  ∴ 	���� + 2	u ��b + u��bb = e(e − 1)�                   [ using (1)] 
 

Example 60 

Verify Euler’s theorem for the function � = 	9 − 2	�u + 3	u� + u9 
Solution 

Clearly � is a homogeneous function of degree 3. �� = 3	� − 4	u + 3u�. �b = −2	� + 6	u + 3u�. ∴ 	�� + u�b = 	(3	� − 4	u + 3u�) + u(−2	� + 6	u + 3u�). 
          = 3(	9 − 2	�u + 3	u� + u9)  
          = 3�. 
Hence Euler’s Theorem is verified. 

 

Example 61 

If { = sin�� 3 ��b
√��√b4 prove that 	{� + u{b = �

� tan {. 
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Solution 

Let | = ��b
√��√b . 

Then { = Ñ��(|) where v is a homogeneous function of degree 
�
� and Ñ({) = sin {. 

∴ By Theorem 2, 	{� + u{b  = �
�

Ò(c)
Ò�(c) = OPQ c

� opO c = TUQ c
� . 

 

Example 62 

If �(	, u) = �
�� + �

�b + Xp� ��Xp� b
���b�  prove 	 ÄB

Ä� + u ÄB
Äb + 2� = 0 

Solution 

�(	, u) = �
�� + �

�b + Xp� ��Xp� b
���b�   

∴ �(Î	, Îu) = �
Ó��� + �

Ó � Ó b + Xp� Ó��Xp� Ób
Ó����Ó�b�   

= �
Ó��� + �

Ó � Ó b + (Xp� Ó�Xp� �)�(Xp� Ó�Xp� b)
Ó����Ó�b�   

= �
Ó� ^ �

�� + �
�b + Xp� ��Xp� b

���b� _  
Hence �(	, u) is a homogeneous function of degree −2. 
∴ By Euler’s theorem 	 ÄB

Ä� + u ÄB
Äb = −2�. 

∴ 	 ÄB
Ä� + u ÄB

Äb + 2� = 0  
 

Exercise 9 

1. Verify Euler’s Theorem for the following functions. 

     (i) { = 	9 − 2	�u + u9          (ii) { = 
	� + 2ℎ	u + du� 
2. If { = sin�� ^√��√b

√��√b_ prove that 	 Äc
Ä� + u Äc

Äb = 0. 
3. If { = tan�� 3�[�b[

��b 4 prove that 	 Äc
Ä� + u Äc

Äb = sin 2{.  
   Hence or otherwise prove that  

    	� Ä�c
Ä�� + 2	u Ä�c

Ä�Äb + u� Ä�c
Äb� = (1 − 4 sin� {) sin 2{. 

4. If { = �b
��b prove that 	� Ä�c

Ä�� + 2	u Ä�c
Ä�Äb + u� Ä�c

Äb� = 0. 
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UNIT-II 

 

APPLICATION OF DIFFERENTIATION I 

 

2.0 Introduction 

 In this chapter we shall discuss some important applications of 

differentiation such as the geometrical applications – tangent, normal sub 

tangent, subnormal, angle of intersection, radius of curvature, evolutes 

and envelope of Cartesian and polar curves.   

 

2.1 Tangent, Normal, Sub tangent, Subnormal 

2.1.1 Tangent and Normal 

 Consider a function u = �(	)  which is continuous in @
, dA . 
Suppose �(	) is differentiable at a point ~ ∈ (
, d). Let Ô  be the point \~, �(~)]  which lies on the graph of � . Let Õ\~ + ℎ, �(~ + ℎ)]  be a 
neighboring point. Draw ÔÖ  and Õ×  perpendicular to 	 -axis. From Ô 
draw Ôv  perpendicular to Õ× . Then we have ÔÖ = �(~)  and Õ× =�(~ + ℎ). Let the chord ÔÕ intersect the 	- axis at Ø making an angle L 
with the positive direction of the 	-axis measured in the anticlockwise 

direction. Let the tangent at Ô to the curve u = �(	) intersect the 	-axis at Ù making an angle Ú with the positive direction of the 	-axis measured in 

the anticlockwise direction. 

 
 Now as the point Õ approaches Ô along the graph, both Õv and Ôv tend to zero. Also the chord ÔÕ in the limiting position tends to the 

tangent at Ô and the angle L tends to angle Ú. 
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∴ �x(~) = limr→� ^B(��r)�B(�)
r _  

  = limr→� ^ÛÜ�ÝÞ
Ýß _  

  = limr→� ^Ûß
Ýß_  

  = limr→� tan L = tan Ú. 
Hence the derivative �x(~) represents the slope of the tangent to u = �(	) 
at \~, �(~)]. 
 

2.1.2 Equation of tangent and normal 

 Since the slope of the tangent at any point (	�, u�) on the curve u = �(	) is �x(	�) we see that the Equation of the tangent to the curve at (	�, u�) is given by u − u� = �x(	�)(	 − 	�) 
Since the normal to the curve u = �(	)  at (	�, u�)  is 

perpendicular to the tangent to the curve at that point the slope of the 

normal is given by – 3 �
B�(�8)4 provided �x(	�) ≠ 0. 

Hence the equation of normal to the curve at (	�, u�) is given by  
u − u� =– � 1�x(	�)� (	 − 	�) 

 

2.1.3 Sub tangent, Subnormal, Length of Tangent, Normal, Sub 

tangent and Subnormal 

Definition 

 Let Ô(	, u) be any point on the curve u = �(	). Let the tangent 
and the normal at Ô meet the 	-axis at Ù and × respectively. Draw ÔÖ 

perpendicular to the 	-axis. ÔÙ and Ô× are the length of the tangent and 

normal to the curve and ÙÖ and Ö× are the subtangent and subnormal 

to the curve at the point Ô. 
 Let à be the angle that the tangent makes with the 	-axis. 
Length of the tangent = ÔÙ = u cosec à 
  = u�1 + cot� à  
  = b�TUQ� á��

TUQ á   

  = b���b��
b�   
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Length of normal = Ô× = u sec à 
       = u�1 + tan� à  
       = u�1 + ux�  
Length of the subtangent = ÙÖ = u cot à 
        = b

TUQ á = b
b�  

Length of the subnormal = Ö× = u tan à 
       = uu′. 
 

2.1.4 Polar Tangent, Normal, Sub-tangent, Sub-normal 

 Let Ô(¼, L) be a point on the polar curve whose equation is ¼ =�(L). Draw the tangent and the normal to the curve at Ô. Through the 
pole â draw a perpendicular to the radius vector âÔ to meet the tangent 

at Ù and the normal at ×. Then âÙ is called the polar subtangent and â× 

is called the polar subnormal to the curve ¼ = �(L) at Ô. From  the figure, ÔâÙ is a right-angled triangle. 
∴ With the usual notation tan Ñ = ãä

ãÝ = ãä
Â . 

∴ âÙ = ¼ tan Ñ = ¼� 3tI
tÂ4.               �∵ tan Ñ = ¼ 3tI

tÂ4� 
∴ Polar sub-tangent = ¼� 3tI

tÂ4. 
Similarly, we can prove that polar sub-normal â× = tÂ

tI. 
The polar tangent ÔÙ = âÔ sec Ñ 
     = ¼�1 + tan� Ñ  
∴ Polar tangent = ¼�1 + ¼� 3tI

tÂ4�
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Polar normal Ô× = âÔ cosec Ñ 
        = ¼�1 + cot� Ñ  
        = ¼�1 + �

Â� 3tÂ
tI4�

  

∴ Polar Normal = �¼� + 3tÂ
tI4�

 

 

Example 1 

Find the equation of the tangent to the parabola u� = 4
	 at (	�, u�). 
Solution u� = 4
	. 
Differentiating w. r. t. 	 we get 2uux = 4
. 
∴ ux = 3�&

b84  
∴ Slope of the tangent at (	�, u�) = 3�&

b84. 
Equation of the tangent at (	�, u�) is 
u − u� = 3�&

b84 (	 − 	�). 
∴ uu� − u�� = 2
	 − 2
	�. ∴ uu�  = 2
	 + u�� − 2
	�. 
 = 2
	 + 4
	� − 2
	�                           (∵ u�� = 4
	�) ∴ uu� = 2
(	 + 	�). 
 

Example 2 

Find the equation of the normal to the curve 	 = 
(L − sin L), u =
(1 − cos L) at L = �/2. 
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Solution 	 = 
(L − sin L), u = 
(1 − cos L). tb
t� = tb

tI ÷ t�
tI  

    = & OPQ I
&(��opO I)  

   = cot(L/2). ∴ Slope of the tangent at L = �/2 is cot(�/4) = 1. ∴ Slope of the normal at L = �/2 is −1. 
Also, at L = �/2, 	 = 
 3m

� − 14 and u = 
. 
∴ Equation of the normal at L = �/2 is  
u − 
 = (−1) ^	 − 
 3m

� − 14_. 
(i.e.) 	 + u = &m

�  . 
 

Example 3 

Find the lengths of the tangent, normal, subtangent, subnormal to the 

curve 	 = 
(L − sin L);  u = 
(1 − cos L) at L = �/2. 
Solution 	 = 
(L − sin L);  u = 
(1 − cos L). 
∴ tb

t� = tb
tI ÷ t�

tI = & OPQ I
&(��opO I) = cot 3I

�4. 
At L = �/2, u′ = 1 and u = 
. 
Length of the tangent = b���b��

b� = √2
 
Length of the normal = u�1 + ux� = √2
 
Length of the subtangent = b

b� = 
. 
Length of the subnormal = uux = 
. 
 

Example 4 

Find the polar subtangent for cardioid ¼ = 
(1 − cos L). 
Solution ¼ = 
(1 − cos L). 
∴ tÂ

tI = 
 sin L. 
Polar subtangent = ¼� tI

tÂ . 



49 

Differential and integral calculus 

      = &�(��opO I)�
& OPQ I   

      = 5& OPQ�3¦�4
� OPQ3¦�4 opO3¦�4  

     = 2
 sin� 3I
�4 tan 3I

�4. 
 

Exercise 1 

1. Find the equation of the tangent to the following curves. 

    (i) u� = 4
	 at (
¢�, 2
¢)          (ii) u = 2	� − 4	 + 5 at (3, 11) 
2. Find the equation of the tangent and normal to the following curves at 

the points indicated. 

    (i) √	 + �u = 5 at (9, 4)        (ii) 	 = sin ¢ ; u = cos 2¢ at ¢ = �/6  
3. Find the length of the tangent, normal, subtangent, subnormal to the 

following curves. 

   (i) u�(2
 − 	) = 	� at (
, 
)         (ii) 6u� = 	9 at (6, 6). 
4. Find the lengths of the polar sub-tangent and the polar sub-normal to 

the following curves. 

    (i) ¼L = 
       (ii) ¼ = 
(1 + cos L)           (iii) �&
Â = 1 + S cos L 

Answers 

1. (i) u¢ = 	 + 
¢�      (ii) 8	 − u = 13. 
2. (i) 2	 + 3u = 30; 3	 − 2u = 19.     
   (ii) 4	 + 2u = 3; 2	 − 4u + 1 = 0. 
3. (i) 

√`&
� ; √5
; &

� ; 2
          (ii) 2√13; 3√13;  4; 9. 
4. (i) 
; − &

I�                         (ii) 2
 cos� 3I
�4 cot 3I

�4 ; −
 sin L.   
    (iii) 

�&
� OPQ I ; �&� OPQ I

(��� opO I)�  
 

2.2 Polar Curves 

 Let âÇ, âÉ be the rectangular axes with origin at â. With respect 

to this system any point P in the plane can be specified by its Cartesian 

coordinates (	, u). The point P can also be specified by the coordinates (¼, L) where ¼ = âÔ and L is the angle that the line âÔ makes with the 

positive direction of the 	-axis measured in the anti clockwise direction. 

The numbers ¼ and L are called the polar coordinates of the point Ô. Then â is called the pole, the ray âÇ is called the radius vector joining â and Ô.  
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 The relations between Cartesian and polar coordinates of a point Ô are given by 
	 = ¼ cos L ; u = ¼ sin L and ¼ = �	� + u�;  L = tan�� 	. 
 

2.2.1 Angle between radius and vector and tangent 

 Let ¼ = �(L) be the equation of a curve in polar coordinates. 
 Let Ô(¼, L) be a point on the curve. 
 Let Ñ be the angle between the radius vector âÔ and the tangent 
to the curve at P. 

 Let Ú be the angle made by the tangent at Ô with the initial line. 
 Now with respect to the Cartesian coordinates we have 	 = ¼ cos L = �(L) cos L      (1) u = ¼ sin L = �(L) sin L      (2) 

Equations (1) and (2) can be taken as the parametric equations of the 

given curve with L as parameter. 

 We know that the slope of the tangent to the curve at P is 

tan Ú = tb
t� = tb

tI × tI
t� = OPQ IB�(I)�B(I) opO I

opO IB�(I)�B(I) OPQ I  
         = TUQ I�@B(I)/B�(I)A

��TUQ I@B(I)/B�(I)A       (3) 

But Ú = L + Ñ. 
Hence tan Ú = tan(L + Ñ). 
∴ tan Ú = TUQ I�TUQ Ò

��TUQ I TUQ Ò      

 (4) 

Comparing (3) and (4) we get 

tan Ú = B(I)
B�(I) = ¼ ÷ 3tÂ

tI4 = ¼ × 3tI
tÂ4. 

 

2.2.2 The angle of intersection of two polar curves 

 At a point of intersection of the two given curves the radius 

vector is the same. 

 Let Ú� and Ú� respectively be the angles between the common 

radius vector and the tangents to the curve. 

 Then |Ñ� − Ñ�| is the angle of intersection of the curves. 
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Note  

1. If |Ñ� − Ñ�| = m
�  then the two curves are said to intersect 

orthogonally. 

2. If |Ñ� − Ñ�| = 0 then the two curves are said to touch each 
other. 

 

Example 5 

Find the angle between the radius vector and the tangent to the curve ¼ =

(1 − cos L) at L = m

a . Also find the slope of the tangent at L = m
a . 

Solution ¼ = 
(1 − cos L). 
∴ tÂ

tI = 
 sin L. 
∴ tan Ú = ¼ ÷ tÂ

tI = &(��opO I)
& OPQ I = � OPQ�3¦�4

� OPQ3¦�4 opO3¦�4. 
  = tan 3I

�4. 
∴ Ñ = I

�. Hence at L = m
a  we have Ñ = m

�� . 
We know that Ú = L + Ñ. Hence Ú = m

a + m
�� = m

5 . ∴ Slope = tan Ú = tan 3m
54 = 1. 

 

Example 6 

Find the angle of intersection of curves ¼ = &
��opO I and ¼ = g

��opO I . 
Solution  

Let Ô(¼, L) be the point of intersection of the two curves. 
Let Ñ� and Ñ� be the angles which âÔ makes with two tangents at Ô. 
We have ¼ = &

(��opO I) = �
� 
 sec� 3I

�4. 
Taking logarithm and differentiating, we get 
�
Â 3tÂ

tI4 = �
O·o(I/�) ^sec 3I

�4 tan 3I
�4 3�

�4_  
           = tan 3I

�4. 
∴ tan Ñ� = ¼ ÷ 3tÂ

tI4 = cot 3I
�4 = tan 3m

� − I
�4  

∴  Ñ� = m
� − I

�. 
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Similarly for the curve ¼ = g
(��opO I) we can prove Ñ� = − I

� . ∴ |Ñ� − Ñ�| = m
� . 

Note Hence the two curves intersect orthogonally. 

 

Example 7 

Find the angle of intersection of the curves ¼ = 
L and ¼L = 
. 
Solution 

Solving the two curves we have L� = 1 or L = ±1. 
Hence the point of intersection of two curves are Ô(
, 1) and Õ(−
, −1). 
For the curve ¼ = 
L we have tÂ

tI = 
. 
∴ tan Ñ = Â

& = &I
& = L. 

∴ At Ô(
, 1), tan Ñ� = 1 and Ñ� = m
5. 

Similarly for the curve ¼L = 
 we can prove that tan Ñ� = −1 at Ô(
, 1). 
Hence Ñ� = 9m

5  . ∴ The angle between the curves is |Ñ� − Ñ�| = 7m
5 − 9m

5 7 = m
� . 

Hence at Ô(
, 1) the curves intersect orthogonally. 
Similarly we can prove that the curves intersect orthogonally at Õ(−
, −1) 
also. 

 

Exercise 2 

1. Find the angle between the radius vector and the tangent for the 

following curves. 

    (i) ¼ = 
(1 − cos L)                         (ii) �Â = 1 + cos L     
   (iii) ¼W = dW(cos eL + sin eL) 
2.  Find the angle of intersection of  the following curves. 

     (i) ¼ = 
(1 + cos L); ¼ = d(1 − cos L) 
     (ii) ¼ = 
 sin 2L ; ¼ = 
 cos 2L 
     (iii) ¼ = 
 log L ; ¼ = &

Xp� I 
Answers 

1. (i) 
I
�                     (ii) 

m
� − I

�                          (iii) 
m
5 + eL 

2. (i) 
m
�                      (ii) tan�� 35

94                (iii) tan�� 3 ��
����4 
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2.3 Pedal Equation of a curve ( p – r equation) 

Length of the perpendicular from the pole to the tangent at æ(ç, è) 
 Let   denote the length of the perpendicular âÙ drawn from â to 
the tangent at Ô(¼, L). Let Ñ be the angle between the tangent at Ô and 
the radius vector âÔ. 
From triangle âÙÔ,   = ¼ sin Ñ. 
∴ �

�� = opO·o� Ò
Â� = ��opT� Ò

Â� . 

       = �
Â� + �

Â� 3 �
TUQ Ò4�

. 

 

       = �
Â� + �

Â� �
Â� 3tÂ

tI4�
  

∴ �
�� = �

Â� + �
Â� 3tÂ

tI4�
. 

Note If we put ¼ = �
c  then 3tÂ

tI4 = − �
c� 3tc

tI4  and the above equation 
becomes 

�
�� = {� + {5 ^− �

c� 3tc
tI4_�

. 

∴ �
�� = {� + 3tc

tI4�
. 

 

Definition 

 The equation of a curve in terms of   and ¼ is called the p – r 
equation of the curve. (pedal equation) 

Let the equation of the given curve be ¼ = �(L)   (1) 

For this curve we have 
�

�� = �
Â� + �

Â� 3tÂ
tI4�

    (2) 
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Eliminating L between (1) and (2) we get the pedal equation of the given 
curve. 

 

Example 8 

Find the   − ¼ equation of ¼ = 
 sin L. 
Solution ¼ = 
 sin L. 
∴ tÂ

tI = 
 cos L. 
We have 

�
�� = �

Â� + �
Â� 3tÂ

tI4�
 

        = �
Â� + �

Â� (
 cos L)�  
        = �

Â� + &� opO� I
Â�   

        = &� OPQ� I�&� opO� I
Â�   

        = &�
Â� . ∴ 
� � = ¼5. ∴ 
  = ¼� is the required   − ¼ equation. 

 

Example 9 

Find the   − ¼ equation of the curve ¼� sin 2L + 
� = 0. 
Solution ¼� sin 2L + 
� = 0. ∴ ¼� = −
� cosec 2L      

 (1) 

Differentiating (1) with respect to L we get 
2¼ tÂ

tI = 2
� cosec 2L cot 2L  
∴ tÂ

tI = &� opO·o �I opT �I
Â . 

We have 
�

�� = �
Â� + �

Â� 3tÂ
tI4�

 

        = �
Â� + �

Â� 3&� opO·o� �I opT� �I
Â� 4  

        = �
Â� + �

Âé (
5 cosec� 2L)(cosec� 2L − 1)  
        = �

Â� + �
Âé ^¼5 3Â�

&� − 14_                                      (using (1)) 
        = �

Â� + �
Â� 3Â��&�

&� 4  
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       = �
Â� + Â�

&� − �
Â�  

∴ �
�� = Â�

&� . ∴  �¼� = 
5 or  ¼ = 
�. 
 

Example 10 

Find the   − ¼ equation of the curve ¼ = &
� (1 − cos L) 

Solution 

¼ = &
� (1 − cos L)       (1) 

Differentiating (1) with respect to L we get tÂ
tI = &

� sin L 
We have 

�
�� = �

Â� + �
Â� 3tÂ

tI4�
 

        = �
Â� + �

Â� 3&�
5 sin� L4  

        = 5Â��&� OPQ� I
5Â�   

        = 5�°�
� �(��opO I)��&� OPQ� I

5Â�   

        = 5&� OPQ�3¦�4�5&� OPQ�3¦�4 opO�3¦�4
5Â�   

        = 5&� OPQ�3¦�4^OPQ�3¦�4�opO�3¦�4_
5Â�   

        = &� OPQ�3¦�4
Â[3°�4(��opO I)                                          (From (1)) 

        = &� OPQ�3¦�4
Â[3°�4×� OPQ�3¦�4 = &

Â[ . 

∴  � = &
Â[ . 

 

Example 11 

Find the   − ¼ equation of the conic CÂ = 1 + S cos L 
Solution 
C
Â = 1 + S cos L       (1) 

∴ ¼ = C
��� opO I  ∴ tÂ

tI = C� OPQ I
(��� opO I)�  
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We have 
�

�� = �
Â� + �

Â� 3tÂ
tI4�

 

�
�� = �

Â� + �
Â� ^ C��� OPQ� I

(��� opO I)�_  
    = �

Â� + �
Â� ^C��� OPQ� I

(C/Â)� _                                               (Using (1)) 
∴ �

�� = �
Â� + �� OPQ� I

C�       

 (2) 

Now, 1 + S cos L = C
Â ⇒ S cos L = C

Â − 1 
  ⇒ S� cos� L = 3C

Â − 14�
  

  ⇒ S�(1 − sin� L) = 3C
Â − 14�

  

  ⇒ S� sin� L = S� − 3C
Â − 14�

  

From (2) we get 
�

�� = �
Â� + �

C� µS� − 3C
Â − 14�¶ 

        = �
Â� + �

C� ^��Â��C��Â���CÂ
Â� _  

        = ��Â��Â���CÂ
C�Â�   

        = ��Â�Â��C
C�Â   

∴  � = C�Â
��Â�Â���C  

This is the   − ¼ equation of the conic CÂ = 1 + S cos L. 
 

Example 12 

Find the   − ¼ equation of the curve ¼ = 
 SI opT ê . 
Solution tÂ
tI = (cot <)
 SI opT ê . 
We have 

�
�� = �

Â� + �
Â� 3tÂ

tI4�
 

        = �
Â� + �

Â� \
�S�I opT ê](cot� <)u�. 
        = Â��&� opT� ê ��¦ ëìí î

Â�   

        = Â��opT� ê\& �¦ ëìí î]�
Â�   

        = Â��Â� opT� ê
Â�   
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        = opO·o� ê
Â�   

∴  � = ¼� sin� <. 
Hence   = ¼ sin <. 
 

Exercise 3 

Find the   − ¼ equation of the following curves. 
(i) 2
 = ¼(1 − cos L) 
(ii) ¼� = 
� sin 2L 
(iii) ¼� cos 2L = 
� 
Answers 

(i)  � = 
¼            (ii)  
� = ¼�             (iii)  ¼ = 
�  
 

2.4 Curvature 

2.4.1 The length of an arc and its derivatives 

 Consider a curve given by the equation u = �(	). Let � be a fixed 
point on the curve. Let Ô(	, u) be an arbitrary point on the curve. Let ¿ 
denote the arc length of Ô. Clearly ¿ is a function of 	. 
We shall now prove that 

tï
t� = µ1 + 3tb

t�4�¶
8�
. 

Let Õ(	 + ∆	, u + ∆u) be a neighbouring point on the curve. Let arc �Õ =¿ + ∆¿. 
From the right angled triangle ÔÕv we get ÔÕ� = Ôv� + vÕ� . 
           = (∆	)� + (∆u)�  
∴ 3ÝÛ

∆ï 4� 3∆ï
∆�4� = 1 + 3∆b

∆�4�
. 

Now as Ô → Õ, ÝÛ
∆ï = 3�rñÂt ÝÛ

&Â� ÝÛ 4 → 1 and ∆	 → 0. 
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∴ 3tï
t�4� = 1 + 3tb

t�4�
 . 

∴ tï
t� = µ1 + 3tb

t�4�¶
8�
. 

Note Let the tangent at Ô  and the chord ÔÕ  make angle Ñ  and L 
respectively with the 	-axis. From the right angled triangle ÔÕv we get 
cos L = Ýß

ÝÛ = ∆�
ÝÛ = 3∆�

∆ï4 3 ∆ï
ÝÛ4  

Now, as Ô → Õ, L → Ñ and òï
ÝÛ = 3 &Â� ÝÛ

órñÂtÝ ÝÛ4 → 1. 
∴ cos Ñ = t�

tï. Similarly sin Ñ = tb
tï  

Also sin Ñ = tb
tï = 3tb

t�4 3t�
tï4 = b8

\��b8�]8�  and sin Ñ = t�
tï = �

\��b8�]8� 

 

Definition 

 Consider a curve given by the equation u = �(	). suppose the 
curve has a definite tangent at each point. Let � be a fixed point on the 
curve and Ô be an arbitrary point on the curve. Let ¿ denote the arc length 
�Ô. Let Ñ be the angle made by the tangent with the 	-axis. Then 3tÒ

tï 4 is 
called the curvature of the curve at Ô. 
 

Thus the curvature is the rate of turning of the tangent w. r. t. the arc 

length. 

 

Theorem 2.1 

The curvature of a circle of radius ¼ at any point is �Â . 
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Proof 

 

 
Let � be a fixed point on the circle and Ô be any point on the circle. Let arc �Ô = ¿. Let the tangent at Ô make an angle Ñ with the tangent at �. Then ∠�âÔ = Ñ. ∴ ¿ = ¼Ñ. 
∴ tï

tÒ = ¼ and hence tÒ
tï = �

Â . 
Thus the curvature of a circle of radius ¼ is �Â . 
 

Definition 

The reciprocal of the curvature of a curve at any point is called the radius 

of curvature at that point and it is denoted by õ. 
Hence we have õ = tï

tÒ . 
Note For a circle of radius ¼, the radius of curvature at any point is equal to ¼. 
 

2.4.2 Formula for radius of curvature 

1. Cartesian Form 

We know that 
tb
t� = tan Ñ. 

Differentiating w. r. t. ¿ we get, 
3t�b

t��4 3t�
tï4 = sec� Ñ 3tÒ

tï 4. 
∴ u� cos Ñ = sec� Ñ 3tÒ

tï 4. 
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∴ tï
tÒ = O·o[ Ò

b� = \��TUQ� Ò][�
b� . 

∴  õ = \��b8�][�
b� . 

Note If we start with the equation cot Ñ = t�
tb and proceed as above we 

arrive at the following alternative formula for the radius of curvature. 

õ = µ��3�Z��4�¶
[�

���Z���� . 

This alternative formula can be used to find õ when tb
t� becomes ∞ at the 

given point. 

 

2. Parametric Form 

Let 	 = �(¢) and u = ?(¢) be the parametric equations of the given curve. 

∴ tb
t� = 3tb

t£ 4 3t£
t�4 = D�(£)

B�(£)      (1)  

Where �x(¢) = tB
t£  and ?x(¢) = tD

t£  t�b
t�� = D��B��D�B��

(B�)�        (2) 

Substituting (1) and (2) in the Cartesian form and simplifying we get 

õ = 3B���D��4[�
B�D���B��D�  

 

3. Implicit Form 

Let �(	, u) = 0 be the implicit form of the given curve. Differentiating �(	, u) = 0 we get �� + �bux = 0. 
∴ ux = − BZB� .       

 (1) 

Now, uxx = − �
\B�]� ²�b\��� + �b�ux] − ��\��b + �bbux]³. 

By (1), uxx = − �
\B�]� ^���\�b]� − 2��b���b + �bb(��)�_  (2) 

Substituting (1) and (2) in the Cartesian form and simplifying we get, 

õ = \BZ��B��][�
BZZB����BZ�BZB��B��BZ� . 
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4. Polar Form 

Let ¼ = �(L) be the given curve in polar coordinates. ∴ 	 = ¼ cos L  and u = ¼ sin L , may be regarded as the parametric 

equations of the given curve the parameter being L. 
∴ t�

tI = cos L tÂ
tI − ¼ sin L  and tb

tI = sin L tÂ
tI + ¼ sin L      

∴ t��
tI� = cos L t�Â

tI� − 2 sin L tÂ
tI − ¼ cos L and  

t�b
tI� = sin L t�Â

tI� + 2 cos L tÂ
tI − ¼ sin L  

Substituting these values in the formula for õ in parametric form and 

simplifying we get 

õ = \Â��Â8�][�
Â���Â8��Â Â� where ¼� = tÂ

tI and ¼� = t�Â
tI� . 

 

5. ö − ç Form 
With the usual notations we prove the following. 

(i) 3tï
tÂ4� = ¼� 3tI

tÂ4� + 1. 
(ii) 3tï

tI4� = ¼� + 3tÂ
tI4�

 

(iii) sin Ú = ¼ tI
tï  

(iv) cos Ú = tÂ
tï 

Proof 

Let u = �(	) and ¿ be the arc length. 
Then 3tï

t�4� = 1 + 3tb
t�4�

 

(i.e.) �	� + �u� = �¿�       (1) 

Now, 	 = ¼ cos L and u = ¼ sin L. 
Taking the total differentials we get, �	 = −¼ sin L  �L + cos L  �¼  �u = ¼ cos L  �L + sin L  �¼. ∴ �	� + �u� = ¼��L� + �¼�  ∴ �¿� = ¼��L� + �¼�                      (using (1))   (2) 

∴ 3tï
tÂ4� = ¼� 3tI

tÂ4� + 1. Hence we get (i). 
Also from (2), 3tï

tI4� = ¼� + 3tÂ
tI4�

. Hence we get (ii). 
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Let Ú be the angle between the tangent at Ô(¼, L) and the radius vector ¼. 
Let à be the angle which the tangent makes with the initial line. Let   be 
the length of the perpendicular drawn from the origin to the tangent at Ô. 
Then we have tan Ú = ¼ ÷ tÂ

tI . ∴ cot Ú = �
Â 3tÂ

tI4  
From (ii) we get 

tï
tI = �¼� + 3tÂ

tI4�
. 

         = ¼�1 + �
Â 3tÂ

tI4�
 . 

  = ¼�1 + cot� Ú  
  = ¼ cosec Ú. 
∴ sin Ú = ¼ tI

tï  . Hence we get (iii). 
From (i) we get, 

tï
tÂ = �¼� 3tI

tÂ4� + 1 
          = �tan� Ú + 1 = sec Ú. 
∴ cos Ú = tÂ

tï . 
 

2.4.3 Formula for radius of curvature in ö − ç coordinates 
We have (i) sin Ú = ¼ tI

tï  
               (ii) cos Ú = tÂ

tï 
               (iii)   = ¼ sin Ú. 
Now from (iii) we get 

t�
tÂ = sin Ú + ¼ cos Ú t÷

tÂ  . 
       = ¼ tI

tï + ¼ tÂ
tï

t÷
tÂ = ¼ tI

tï + ¼ t÷
tï  . 

      = ¼ 3tI
tï + t÷

tï 4 = ¼ t
tï (L + Ú). 

t�
tÂ = ¼ tá

tï  . ∴ tï
tá = ¼ tÂ

t� . 
∴  õ = ¼ tÂ

t� . 
 

Example 13 

Find the radius of curvature at 	 = m
� on the curve u = sin 	. 
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Solution u = sin 	. ∴ u� = cos 	 and u� = − sin 	. 
∴ At 	 = m

� , u� = 0 and u� = −1. 
∴  õ = \��b8�][�

b� = (���)[�
�� = −1 . 

 

Example 14 

Find the radius of curvature at any point of the curve 	 = 
 cos9 L , u =
 sin9 L. 
Solution 

We have 	 = 
 cos9 L , u = 
 sin9 L. 
∴ tb

t� = tb
tI × tI

t� . 
        = 9& OPQ� I opO I

�9& opO� I OPQ I . 
∴ t�b

t�� = t
tI (− tan L) tI

t� . 
          = � O·o� I

�9& opO� I OPQ I . 
          = �

9& opO� I OPQ I . 

∴  õ = \��b8�][�
b� = (1 + tan� L)[� (3
 cos5 L sin L = 3
 cos L sin L. 

 

Example 15 

Find the radius of curvature of the curve given by 	9 − 2	�u + 3	u� −4u9 + 5	� − 6	u + 7u� − 8u = 0. 
Solution 

Let �(	, u) = 	9 − 2	�u + 3	u� − 4u9 + 5	� − 6	u + 7u� − 8u = 0. ∴ �� = 3	� − 4	u + 3u� + 10	 − 6u. �b = −2	� + 6	u − 12u� − 6	 + 14u − 8. ��� = 6	 − 4u + 10. �bb = 6	 − 24u + 14. ��b = −4	 + 6u − 6. 
At (0, 0), �� = 0; �b = −8; ��� = 10; �bb = 14 and ��b = −6. 
Substituting these values in the formula for õ in implicit form we get 
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∴ õ = \BZ��B��][�
BZZB����BZ�BZB��B��BZ�  

õ = \���(��)�][�
��(��)���(�a)(�)(��)��5(�)�  

    = \��][�
��×a5 = 5

` . 
 

Example 16 

Find the pedal equation of the curve 	� + u� = 2 
	 and deduce its radius 
of curvature. 

Solution 

Obviously the given equation represents the equation of a circle. Put 	 =¼ cos L , u = ¼ sin L. ∴ ¼� = 2
¼ cos L. ∴ ¼ = 2
 cos L which is the polar equation of the circle. 
Now, 

tÂ
tI = −2
 sin L. 

We have 
�

�� = �
Â� + �

Â� 3tÂ
tI4�

. 

        = �
Â� + 5&� OPQ� I

Â�  . 

        = Â��5&� OPQ� I
Â�  . 

         = 5&� opO� I�5&� OPQ� I
Â�  . 

         = 5&�
Â�  . 

∴  � = Â�
5&� . 

Differentiating (1) w. r. t. ¼ we get 2  t�
tÂ = 5Â[

5&� . 
∴ t�

tÂ = Â[
�&�� . 

∴ ¼ tÂ
t�  = ¼ 3�&��

Â[ 4. 
 = 3�&�

Â� 4 3Â�
�&4                                              ( using (1)) 

∴  õ = 
. 
 

Example 17 

Find the radius of curvature of the curve ¼ = 
L. 



65 

Differential and integral calculus 

Solution 

For the polar form the radius of curvature is 

õ = \Â��Â8�][�
Â���Â8��Â Â� where ¼� = tÂ

tI and ¼� = t�Â
tI� . 

For the curve ¼ = 
L we have ¼� = 
 and ¼� = 0. 
∴ õ = \&�I��&�][�

&�I���&� = &[\I���][�
&�(I���)   

∴ õ = &\I���][�
(I���)  . 

 

Example 18 

Find the radius of curvature for the general conic. 
C
Â = 1 + S cos L                                                                       

Solution 

We know that   − ¼ equation of the curve CÂ = 1 + S cos L is  
 � = C�Â

��Â�Â��C        

 (1) 

The radius of curvature is õ = ¼ tÂ
t� . 

Differentiating (1) with respect to ¼ we get 
2  t�

tÂ = � ^\��Â�Â��C]�Â\����]
(��Â�Â��C)� _. 

          = �C[
(��Â�Â��C)� . 

∴ tÂ
t� = �\��Â�Â��C]�

C[  . 

∴ ¼ tÂ
t� = Â�\��Â�Â��C]�

C[  . 

∴ õ = µÂ\��Â�Â��C]�
C[ ¶ ×  . 

       = µÂ\��Â�Â��C]�
C[ ¶ × ^ C�Â

��Â�Â��C_
8�
    (using (1)) 

       = Â[�\��Â�Â��C][�
C�  . 

∴ õ = \��Â��Â���CÂ][�
C�  . 
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Exercise 4 

1. Find the curvature of the following curves at the indicated points. 

    (i) 2u = 	 − 	� + 	9 at 31, �
�4         (ii) 	u = 12 at (3, 4) 

2. Find the radius of curvature of the following curves at the indicated 

points. 

    (i) u = Xp� �
�  at 	 = 1.                  (ii) √	 + �u = 1 at 3�

5 , �
54 

    (iii) 	� = 4
u at (0, 0)               (iv) u = S�  at (0, 1)   
3. Find the radius of curvature of the following 

    (i) 	 = 
 log(sec L + tan L) ; u = sec L 
    (ii) 	 = 
(cos ¢ + ¢ sin ¢);  u = 
(sin ¢ − ¢ cos ¢) 
    (iii) 	 = 3¢9; u = 3¢ − ¢9 at ¢ = 1. 
4. Find the pedal equation of the curve ¼W = 
W cos eL and hence find õ. 
Answers 

1. (i) 
�

√�         (ii) 
�5

��`       2. (i) 
�√�

9        (ii) 
�

√�       (iii) 2
        (iv) 2√2        
3. (i) 
 sec� L       (ii) 
¢         (iii) 6          4. &¯Â8�¯

W��  

 

2.5 Evolutes 

Centre and circle of curvature 

Definition 

 Consider a point Ô on any given curve. Draw the normal to the 

curve at Ô. Let Á be the point on the normal to the curve at Ô such that ÁÔ = õ and Á lies on the side towards which the curve is concave. Then Á 
is called the centre of curvature to the curve at Ô. The circle with centre Á 
and radius õ is called the circle of the circle of curvature at Ô. 
Coordinates of the centre of curvature 

 Let u = �(	) be the given curve. Let Ô(	, u) be any point on the 
curve. Let Á(<, =) be the centre and õ the radius of curvature of the curve 
at Ô. Let à be the angle made by the tangent to the curve at Ô with the 
positive direction of the 	-axis. From the figure < = âÖ = â× − Ö× = â× − âÔ  
    = 	 − õ sin à  
    = 	 − \��b8�][�

b� ù b8
\��b8�]8�ú  
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    = 	 − b8b� (1 + u��). 

                       = = ÖÁ = ÖÕ + ÕÁ  
   = u + õ cos à  
   = u + \��b8�][�

b� ù �
\��b8�]8�ú  

   = u + ��b8�b�   

∴ C is 3	 − b8b� (1 + u��), u + ��b8�b� 4. 
 

Definition 

The locus of the centre’s of curvature of a curve is called the 

evolute of the curve. 

 

Example 19 

Prove that the u-coordinate of the centre of the curvature of the curve at 
the point (~, ~) is 2~. 
Solution 	u = ~�         (1) 

Differentiating (1) with respect to 	 we get 	u� + u = 0        

 (2) 

∴ u� = − b
�  ∴ At (~, ~), u� = −1. 
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Differentiating (2) with respect to 	 again we get 
	u� + 2u� = 0. Hence u� = − �b8�  . 

∴ At (~, ~), u� = − �(��)
� = �

�. 
The u-coordinate of the centre of curvature at (	, u) is 
= = u + ��b8�b�  . 

∴ At (~, ~), = = ~ + ��(��)�
(�/�) = ~ + ~ = 2~. 

 

Example 20 

Find the 	 coordinate of the centre of curvature of the curve 	 = 
¢�, u =2
¢. 
Solution 

u� = tb
t£ × t£

t� = �&
�&£ = �

£  . u� = − �
£� × �

�&£ = − �
�&£[ . 

The 	-coordinate < of the centre of curvature of the curve is  
< = 	 − b8b� (1 + u��). 
∴  < = 
¢� − �

£ × (−2
¢9) 31 + �
£�4  

        = 
¢� + 2
¢� 31 + �
£�4 = 3
¢� + 2
. 

 

Example 21 

Find the centre of curvature of u = 	� at the origin. 
Solution 

We have u = 	� ∴ u� = 2	 and u� = 2. ∴ At (0, 0), u� = 0 and u� = 2. 
Let (<, =) be the centre of the curvature at (0, 0). 
∴  < = 	 − b8b� (1 + u��) = 0. 
= = u + ��b8�b� = �

� . 
∴ Centre of curvature is 30, �

�4. 
 

Example 22 

Find the evolute of the curve given by 	 = 
 cos9 L and u = 
 sin9 L. 
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Solution 

We have 	 = 
 cos9 L and u = 
 sin9 L. 
∴ u� = − tan9 L and u� = �

9& sec5 L cosec L 
Let (<, =) be the centre of curvature. 
∴  < = 	 − b8b� (1 + u��). 
        = 
 cos9 L + 9& TUQ I\��TUQ� I]

O·o� I opO·o I   

        = 
 cos9 L + 3
 sin� L cos L.     (1) 

= = u + ��b8�b�  . 

   = 
 sin9 L + 9&\��TUQ� I]
O·o� I opO·o I  

      = 
 sin9 L + 3
 cos� L sin L      (2) 

Now, to find the equation of the evolute, we have to eliminate L from (1) 

and (2). From (1) and (2), we have < + = = 
(cos L + sin L)9. < − = = 
(cos L − sin L)9. 
(< + =)�[ + (< − =)�[ = 
�[(2) = 2
�[. 
The locus of (<, =) is (	 + u)�[ + (	 − u)�[ = 2
�[. 
 

Example 23 

Find the evolute of the parabola u� = 4
	. 
Solution 

We have u� = 4
	.      

 (1) 

∴ u� = �&
b  and u� = − 5&�

b[ . 
Let (<, =) be the centre of curvature. 
∴  < = 	 − b8b� (1 + u��). 
        = 	 + b��5&�

�&   

        = 3	 + 2
        (by (1))      (2)  

= = u + ��b8�b� . 

    = − b[
5&� . 

    = − ���[
√&     (by (1))      (3) 
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From (2) and (3) eliminating 	, we have  
=� = 5�[

& = 5(ê��&)[
�½&  . 

∴ 27
 =� = 4(< − 2
)9. ∴ The locus of (<, =) is 27
 u� = 4(	 − 2
)9. 
 

Example 24 

The normal to a given curve is tangent to its evolute. 

Solution 

We know that the coordinates of the centre of curvature of the given curve 

are given by < = 	 − b8b� (1 + u��); = = u + ��b8�b�  . 

∴ tê
t� = 1 − 3b8b�4  2u�u� − (1 + u��) ^b���b8b[b�� _. 

        = 1 − 2u�� − (1 + u��) 31 − b8b[b�� 4. 
        = −3u�� + b8b[b�� + b8[b[b�� = − b8b�� (3u�u�� − u9 − u��u9). 
Now, 

tû
t� = u� + ^�b8b���\��b8�]b[b�� _ = �

b�� (3u�u�� − u9 − u��u9). 
∴ tû

tê = − �
b8 .       

 (1) 

But 
tû
tê is the slope of the tangent to the evolute and u� is the slope of the 

tangent to the given curve at the corresponding point and their product is −1 by (1). ∴ Tangent to the evolute is normal to the given curve.  

 

Exercise 5 

1. Find the coordinates of the centre of curvature at the indicated points. 

     (i)  u = 	� at 3�
� , �

54           (ii) 	u = ~� at (~, ~) 
     (iii) 	 = 
(cos ¢ + ¢ sin ¢); u = 
(sin ¢ − ¢ cos ¢) at ‘¢’ 
     (iv) u = 	 log 	 at the point where ux = 0. 
2. Show that the evolute of the ellipse 

��
&� + b�

g� = 1 is (
	)�[ + (du)�[ =
(
� − d�)�[. 
3. Find the evolutes of the following curves. 

    (i) 2	u = 
� 
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    (ii) 	 = 
@cos ¢ + log tan 3£
�4A;  u = 
 sin ¢. 

    (iii) 	 = 
(L − sin L);  u = 
(1 − cos L). 
Answers 

1. (i) 3− �
� , 9

54   (ii) (2~, 2~)  (iii) (
 cos ¢ , 
 sin ¢)   (iv) 3�
� , 04 

3. (i) (	 + u)�[ + (	 − u)�[ = 2
�[    (ii) u = 
 cosh 3�
&4  

    (iii) 	 = 
(L − sin L);  u = 
(1 − cos L).  
 

2.6 Envelopes 

Introduction 

 Some curves can be obtained as the envelope of a family of 

curves. In fact any curve is envelope of the family of all the tangents to the 

curves. 

 In this section we discuss the method of finding the envelope of a 

given family of curves. 

Envelopes – One parameter family of curves 

Definition 

 Consider an equation of the form �(	, u, <) = 0   (1) 

 For any particular value of < equation (1) represents a particular 
curve. For different values of < we get a family of curves and the equation 

(1) is said to represent a one parameter family of curves with <  as 
parameter. 

 

Examples  

1. The equation u� = 4
	 represents a family of parabolas with a 

common axis and vertex. Here 
 is the parameter. 

2. The equation 	� + u� − 2
	 = 0 represents a family of circles 

with their centres lying on the 	-axis and passing through the origin. Here 
 is the parameter. 

3. The equation u = >	 + &
E represents a family of straight lines 

where > is the parameter and 
 is a given constant. 
Note Let �(	, u, <) = 0 represent a one parameter family of curves. Then 

the curves corresponding to two adjacent values of < need not intersect. 
For examples 	� + u� = 
� represents a family of concentric circles with 

centre at origin and any two curves of the family do not intersect. 
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Definition 

Let �(	, u, <) = 0 be a one parameter family of curves such that 

any two curves correspond to adjacent values of < intersect. 
Now, consider two curves of the family given by �(	, u, <) = 0 

and �(	, u, < + ℎ) = 0 where ℎ is small. As ℎ → 0 the points of intersection 
of the above two curves will tend to a limiting position and the locus of all 

these limiting positions is called the envelope of the given family of 

curves. 

Analytical method of finding envelopes 

 Let the equation of a one parameter family of curves be  �(	, u, <) = 0       

 (1) 

 Consider two adjacent members of the family given by �(	, u, <) = 0 and �(	, u, < + ℎ) = 0. The points of intersection of these 
curves satisfy both these equations and hence satisfy the equation  
B(�,b,ê�r)�B(�,b,ê)

r = 0. 
 ∴  The coordinates of the limiting positions of the point of 

intersection satisfy the equation 

limr→�
B(�,b,ê�r)�B(�,b,ê)

r = 0 (i.e.) ÄB
Ä� = 0.    (2) 

 ∴ The envelope is founded by eliminating < between (1) and (2). 
 If the given family of curves involves two parameters and further 

parameters are connected by a relation then the analytic method of 

finding the envelopes is given below, 

 Consider a two parameter family of curves given by �(	, u, 
, d) =0       (1) 

Suppose the parameters 
 and d are connected by the relation ?(
, d) =0.        (2) 

 Now, (1) can be regarded as a one parameter family of curves with 
 as a parameter if d is considered as a function of 
 given by (2). 
Differentiating (1) and (2) w. r. t. < we get, 
�& + �g 3tg

t&4 = 0       (3) 

∴ ?& + ?g 3tg
t&4 = 0.      

 (4) 

Comparing (3) and (4) we get 
B°D° = BüDü = Î (say) 
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∴ �& = Î ?&  and �g = Î ?g.     

 (5) 

Eliminating 
, d and Î from (1), (2) and (5) we get the required envelope. 

 

Theorem 2.2 

 The envelope touches each member of the given family of curves 

at the corresponding points. 

Proof 

Let the equation of the one parameter family of curves be �(	, u, <) = 0.       (1) 

We know that the envelope is obtained by eliminating < between (1) and �ê(	, u, <) = 0.       (2) 

Now, differentiating (1) w. r. t. 	 we get,     
��(	, u, <) + �b(	, u, <) tb

t� = 0. 
∴ tb

t� = − BZB� . 
∴ The slope of the tangent to the curve (1) is − BZB� . 
Now, the envelope can be represented by (1) provided < is regarded as a 
function of 	, u given by (2). ∴ Differentiating (1) w. r. t. 	 considering < as a function of 	 and u, we get     
�� + �b tb

t� + �ê Äê
Ä� + �ê Äê

Ä�
tb
t�  = 0. 

∴ �� + �b tb
t� = 0.    (by (2)) 

∴ Slope of the tangent to the envelope is  − BZB� . ∴ The slopes of the tangents to the curve and the envelope at the 
common point are equal. Hence they touch each other. 

 

Note  

In page 99, we have proved that the normals to a curve are tangent to its 

evolute. Hence the evolute of a curve is the envelope of the normals to the 

curve. 

 

Example 25 

Find the envelope of the family of lines u = >	 + &
E where 
 is a constant. 
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Solution 

Let �(	, u, >) = u − >	 − &
E = 0     (1) 

ÄB
ÄE = 0 ⇒ −	 + &

E� = 0. 
∴ >� = &

� .       

 (2) 

The envelope is got by eliminating between (1) and (2). 

From (1) u� = 3>	 + &
E4�

. 

         = >�	� + 2
	 + &�
E� . 

         = 
	 + 2
	 + 
	    [ using (2)] 

         = 4
	. ∴ The envelope is the parabola u� = 4
	. 
 

Example 26 

Find the envelope of the family of curves 
� opO ê

& + b OPQ ê
g = 1 where < is the 

parameter and 
 and d are constants. 
Solution 

�(	, u, <) = � opO ê
& + b OPQ ê

g − 1 = 0.    

 (1) 
ÄB
Äê = 0 ⇒ − � OPQ ê

& + b opO ê
g = 0.     (2) 

The envelope is got by eliminating < between (1) and (2). 
Squaring (1) and (2) and adding we get 

3� opO ê
& + b OPQ ê

g 4� + 3− � OPQ ê
& + b opO ê

g 4� = 1. 
��
&� (cos� < + sin� <) + b�

g� (sin� < + cos� <) = 1. 
∴ ��

&� + b�
g� = 1. 

Thus the envelope of the given family of curves is an ellipse. 

 

Example 27 

Find the envelope of the family of circles 	� + u� − 2
	 cos L −2
u sin L = ~� where L is the parameter. 

Solution 	� + u� − 2
	 cos L − 2
u sin L = ~�    (1) 
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Differentiating w. r. t. L we get −2
	 sin L + 2
u cos L = 0     

 (2) 

Squaring (1) and (2) and adding we get the envelope as 4
�(	� + u�) = (	� + u� − ~�)�. 
 

Example 28 

Find the envelope of the family of ellipses 
��
&� + b�

g� = 1 where the two 
parameters 
 and d are connected by the relation 
 + d = ~ where ~ is a 
constant. 

Solution 

Using the relation 
 + d = ~ the given equation can be written as     
��
&� + b�

(��&)� = 1        (1) 

which is a one parameter family of curves with 
 as the parameter. 

Differentiating partially w. r. t. 
 we get − ���
&[ + �b�

(��&)[ = 0. 
 ∴ (��&)[

&[ = b�
�� . 

∴ ��&
& = 3b�

��48[ = b�[
��[ . 

∴ 
 = ���[
��[�b�[ and ~ − 
 = �b�[

��[�b�[ . 

Substituting these values in (1) we get 	�[ + u�[ = ~�[ which is the required 
envelope. 

 

Example 29 

Considering the evolute of a curve as the envelope of its normals find the 

evolute of the ellipse. 

Solution 

Let Ô(
 cos L , d sin L) be any point on the ellipse. 
The equation of the normal at Ô is  
	 sec L − du cosec L = 
� − d�     (1) 

Thus (1) represents the family of normals with L as the parameter. 

Differentiating partially w. r. t. L we get 
	 sec L tan L + du cosec L cot L = 0. 
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∴  − gb
&� = O·o I TUQ I

opO·o I opT I = tan9 L. 
∴ tan L = − 3gb

&�48[
. 

Hence sin L = ± (gb)8[
ý(&�)�[�(gb)�[þ

8�  and cos L = ± (&�)8[
ý(&�)�[�(gb)�[þ

8� . 

Substituting in (1) and simplifying we get the equation of the required 

evolute as (
	)�/9 + (du)�/9 = (
� − d�)�/9. 
 

Exercise 6 

1. Find the envelopes of the following family of curves. 

    (i) u = >	 + √
� + >�; > is a parameter. 

    (ii) u� = 4>(	 − >); > is a parameter. 

    (iii) 	 + u sin L = 
 cos L; L is a parameter. 

2. Find the envelope of the family of straight lines 
�
& + b

g = 1 where 
 and d 
are connected by the relation. 

    (i) 
 + d = ~            (ii) 
d = ~�             (iii) 
E + dE = *E 
3. Considering the evolute of a curve as the envelope of its normals find 

the evloutes of the following curves. 

     (i) u� = 4
	                               (ii) ��
&� − b�

g� = 1 
     (iii) 	 = 
(cos L + L sin L); u = 
(sin L − L cos L). 
Answers 

1. (i) 
��
&� + b�

g� = 1            (ii) u = ±	           (iii) 	� − u� = 
� 
2. (i) √	 + �u = √~      (ii) 4	u = ~�        (iii) ��

E�� + b�
E�� = ,�

E�� 
3. (i) 4(	 − 2
9) = 27
u�          (ii) (
	)�[ + (du)�[ = (
� + d�)�[ 
     (iii) 	� + u� = 
�. 
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UNIT-III 

 

APPLICATION OF DIFFERENTIATION II 

 

3.0 Introduction 

 In this chapter also we shall discuss some important applications 

of differentiation such as the Maxima and Minima of functions of two 

variables, errors and approximation, Jacobians,  Multiple point, 

asymptotes, curve tracing and Taylor’s series expansion.    

 

3.1 Maxima and Minima of function of two variables 

 The reader is familiar with the method of obtaining the maxima 

and minima of functions of one variable. It may be recalled that the 

function u = �(	)  has a maximum at 
  if �x(
) = 0 and �xx(
) < 0  and 
has a minimum at 
 if �x(
) = 0 and �xx(
) < 0. 
 In this section we describe the method of finding the maxima and 

minima of functions of two variables. 

 A function �(	, u) of two independent variables 	 and u is said to 
have a maximum at (
, d) if 
 �(
 + ℎ, d + *) − �(
, d) < 0  
for all sufficiently small values of ℎ and *. 
 Suppose �(	, u) attains a maximum or minimum at (
, d). Then 
ÄB
Ä� = ÄB

Äb = 0 at (
, d). 
Working rule for finding maxima and minima of �(�,�). 
Step 1: Let (
, d) denote the solution of the equations  
         ÄB

Ä� = 0

e� ÄB

Äb = 0�        

 (1) 

Step 2: Let � = Ä�B
Ä�� ,� = Ä�B

Ä�Äb and Á = Ä�B
Äb� at (
, d). 

Step 3: Then,  

(a) If �Á − �� > 0  and < 0  (¾¼ � < 0) , then �(	, u)  has a 
maximum at (
, d). 

(b) If �Á − �� > 0  and > 0  (¾¼ � > 0) , then �(	, u)  has a 
minimum at (
, d).    
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(c) If �Á − �� < 0, then �(	, u) has neither a maximum nor a 

minimum at (
, d). In this case (
, d) is called a saddle point. 
(d) No information is obtained if �Á − �� = 0. In such a case 

further investigation is necessary. 

 

Example 1 

Find the maximum or minimum values of { = 	9u�(1 − 	 − u). 
Solution { = 	9u�(1 − 	 − u)  
∴ Äc

Ä� = 3	�u�(1 − 	 − u) − 	9u�  
Ä�c
Ä�� = 6	u�(1 − 	 − u) − 6	�u�  
Äc
Äb = 2	9u(1 − 	 − u) − 	9u�  
Ä�c

Ä�Äb = 6	�u(1 − 	 − u) − 2	9u − 3	�u�  
Ä�c
Äb� = 2	9(1 − 	 − u) − 2	9u − 2	9u  
Äc
Ä� = 0 ⇒ 3	�u�(1 − 	 − u) − 	9u� = 0  
 ⇒ 	�u�@3(1 − 	 − u) − 	A = 0  
 ⇒ 4	 + 3u = 3      (1) 
Äc
Äb = 0 ⇒ 2	9u(1 − 	 − u) − 	9u� = 0  
 ⇒ 	9u@2(1 − 	 − u) − uA = 0  
 ⇒ 2	 + 3u = 2      (2) 

Solving (1) and (2) we get 	 = �
� and u = �

9 
Now, � = Ä�c

Ä��  
¢ 3�
� , �

94 
  = 6	u�(1 − 	 − u) − 6	�u� 
¢ 3�

� , �
94  

 = − �
:  � = Ä�c

Ä�Äb  
¢ 3�
� , �

94  
    = 6	�u(1 − 	 − u) − 2	9u − 3	�u� 
¢ 3�

� , �
94  

    = − �
��  

Á = Ä�c
Äb�  
¢ 3�

� , �
94  

    = 2	9(1 − 	 − u) − 4	9u 
¢ 3�
� , �

94  
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    = − �
�  

Now, �Á − �� = �
½� − �

�55 = �
�55  is positive. 

Also A is negative. 

∴ The function has a maximum at 3�
� , �

94. 
The maximum value of u is given by  

{ 3�
� , �

94 = 3�
�49 3�

94� 31 − �
� − �

94 = �
59� . 

 

Example 2 

Prove that { = 	9 + u9 − 3
	u is a maximum or minimum at 	 = u = 
 
according as 
 is negative or positive.  
Solution { = 	9 + u9 − 3
	u. 
∴ Äc

Ä� = 3	� − 3
u. 
Ä�c
Ä�� = 6	. 
Äc
Äb = 3u� − 3
	. 
Ä�c

Ä�Äb = −3
. 
and 

Ä�c
Äb� = 6u. 

At 	 = u = 
, � = Ä�c
Ä�� = 6
. 

  � = Ä�c
Ä�Äb = −3
.      

  Á = Ä�c
Äb� = 6
. 

Now, �Á − �� = 36
� − 9
� = 27
� which is positive. 
Also, � = 6
 is positive or negative according as 
 is positive or 

negative. 

Hence {(	, u) is maximum or minimum at 	 = u = 
 according 
as 
 is negative or positive. 
 

Example 3 

Find the extreme values of 	u(
 − 	 − u). 
Solution 

Let { = 	u(
 − 	 − u). 
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∴ Äc
Ä� = 
u − 2	u − u�. 

Ä�c
Ä�� = −2u. 
Äc
Äb = 
	 − 	� − 2	u. 
Ä�c

Ä�Äb = 
 − 2	 − 2u. 
Ä�c
Äb� = −2	. 
Now, 

Äc
Ä� = 0 ⇒ u(
 − 2	 − u) = 0. 

 ⇒ u = 0 ¾¼ 
 − 2	 − u = 0.    

 (1) 
Äc
Äb = 0 ⇒ 	(
 − 2u − 	) = 0. 
 ⇒ 	 = 0 ¾¼ 
 − 2u − 	 = 0.     

 (2) 

From (1) and (2) we have the following four pairs of equations: 

(i) u = 0, 	 = 0. 
(ii) u = 0, 
 − 2u − 	 = 0. 
(iii) 
 − 2	 − u = 0, 	 = 0. 
(iv) 
 − 2	 − u = 0, 
 − 2u − 	 = 0. 
Solving these equations we get the following four points as solutions 

  (0,0), (0, 
), (
, 0) and 3&
9 , &

94. 
Case (i): 

At point (0, 0) � = Ä�c
Ä�� = 0;  � = Ä�c

Ä�Äb = 
;  Á = Ä�c
Äb� = 0. 

∴ �Á − �� = −
�, which is negative. ∴ {(	, u) has neither a maximum nor a minimum at (0,0). 
Case (ii): 

At point (0, 
) � = Ä�c
Ä�� = −2
;  � = Ä�c

Ä�Äb = −
;  Á = Ä�c
Äb� = 0. 

∴ �Á − �� = −
�, which is negative. ∴ {(	, u) has neither a maximum nor a minimum at (0, 
). 
Case (iii): 

At point (
, 0) � = Ä�c
Ä�� = 0;  � = Ä�c

Ä�Äb = −
;  Á = Ä�c
Äb� = −2
. 

∴ �Á − �� = −
�, which is negative. ∴ {(	, u) has neither a maximum nor a minimum at (
, 0). 
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Case (iv): 

At point 3&
9 , &

94 � = Ä�c
Ä�� = − �&

9 ;  � = Ä�c
Ä�Äb = �&

9 ;  Á = Ä�c
Äb� = − �&

9 . 
∴ �Á − �� = 5&�

: − &�
: = &�

9 , which is positive. Further �  is negative or 

positive according as 
 is positive or negative. 
 ∴ At 3&

9 , &
94 , {(	, u) is a maximum or a minimum according as
 >

0 ¾¼ 
 < 0. 
The extreme value = { 3&

9 , &
94 = &�

: 3
 − �&
9 4 = &�

�½ . 
 

Example 4 

Discuss the maxima and minima of {(	, u) = sin 	 sin u sin(	 + u), where 0 < 	 < � and 0 < u < �. 
Solution {(	, u) = sin 	 sin u sin(	 + u). 
∴ Äc

Ä� = sin u @sin 	 cos(	 + u) + cos 	 sin(	 + u)A. 
        = sin u sin(2	 + u). 
Ä�c
Ä�� = 2 sin u cos(2	 + u). 
Äc
Äb = sin 	 @sin u cos(	 + u) + cos u sin(	 + u)A. 
    = sin 	 sin(	 + 2u). 
Ä�c

Ä�Äb = sin 	 cos(	 + 2u) + cos 	 sin(	 + 2u). 
Ä�c
Äb� = 2 sin 	 cos(	 + 2u). 
Now, 

Äc
Ä� = 0 ⇒ sin u sin(2	 + u) = 0. 

When 0 < u < �, sin u ≠ 0. 
Hence sin(	 + 2u) = 0.      (1) 

Similarly, 
Äc
Äb = 0 ⇒ sin u sin(	 + 2u) = 0.    (2) 

∴ From (1) and (2) we get, 2	 + u = � and 	 + 2u = �. 
Solving these equations we get = m

9 , u = m
9 . 

Now, � = Ä�c
Ä��  at 3m

9 , m
94  

   = sin 3m
94 cos 3�m

9 + m
94   

   = 2 sin 3m
94 cos � = −√3. 
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� = Ä�c
Ä�Äb at 3m

9 , m
94 

    = sin 35m
9 4 = −√3/2 . 

Á = Ä�c
Äb� at 3m

9 , m
94 

    = 2 sin 3m
94 cos � = −√3. 

∴ �Á − �� = 3 − 9
5 = :

5, which is positive and � is negative. ∴  {(	, u) is a maximum at 3m
9 , m

94. 
Maximum value = sin 3m

94 sin 3m
94 sin 3�m

9 4 = 9√9
�  . 

 

Exercise 1 

1. Find the maxima and minima for the following functions. 

    (i) 	9 − u� − 3	 
    (ii) 2
�	u − 3
	�u − 
u9 + 	9u + 	u9 . 
    (iii) 	u�§9 − 	�u�§9 − 	u9§9 − 	u�§5. 
    (iv) 

��b
����b��a 

     (v) 2 sin 3��b
� 4 cos 3��b

� 4 + cos(	 + u) 
2. Show that the function {(	, u) = 2	�u + 	� − u� + 2u has no extreme 

value. 

3. Prove that 	5 + 2	�u − 	� + 3u� is minimum when  

   	 = ± √9
� , u = − �

5 . 
4. Prove that { = 	�u� − 5	� − 8	u − 5u� is maximum at 	 = u = 0.   
Answers  

1. (i) 	 = −1, u = 0 gives a maximum. Maximum value = 2. 
    (ii) Max at 39&

� , − &
�4 , 3&

� , &
�4; Min at 3&

� , − &
�4 ; neither max or min at 

(
, 
), (
, −
). 
    (iii) Max value 

��� &�
½�  . 

    (iv) Max at (2, 1); Min at (−2, −1). 
    (v) Min at 	 = u = 2e� − m

�; Max at 	 = u = e� + (−1)W  m
a . 
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3.2 Errors and Approximation 

 If a quantity { is a function of some variables say 	�, 	�, … , 	W then 
an error in one or more of the variables 	�, 	�, … , 	W  will produce a 
corresponding error in the value of {  also. An important practical 

application of differential calculus is to determine the error upon the result 

of the calculations which arise due to the errors in the measurements of 

quantities on which the calculation depends. 

First we shall deal with functions of a single variable. 

 

3.2.1 Approximation in the case of functions of one variable 

 Let u = �(	)  be a function having continuous first order 
differential coefficient. Let there be an error ∆	 in determining the value of 	. Then the error in the value of u is given by ∆u = �(	 + ∆	) − �(	). 
∴ ∆b

∆� = B(��∆�)�B(�)
∆�  . 

Now, by the definition of derivative 
∆b
∆� = �x(	) + � provided 0 < |∆	| < ! where � > 0 is arbitrary. 
∴ �(	 + ∆	) − �(	) = �x(	)∆	 + �∆	 and � → 0 as ∆¿ → 0. ∴ ∆u = �x(	)∆	 (approximately). ∆	 is called the absolute error in 	. 
∆�
�  is called the relative error in 	. ∆�
� × 100 is called the percentage error in 	. 

For example, suppose that, in measuring the length of a rod of 

length 10 c. m. an error of 0.2 c. m. is made. Then the absolute error is 0.2 c. 

m, the relative error is 0.02 c. m. and the percentage error is 2. 

 

Example 5 

The time of oscillation Ù of a simple pendulum of length  is given by the 
formula Ù = 2��3 C

D4. Find the percentage error in Ù (i) if  is increased by 
1% (ii) if the pendulum is removed to a place where ? is diminished by 

0.04%  remaining unaltered. 

Solution 

We have Ù = 2��3 C
D4      (1) 
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(i) Taking logarithm and differentiating w. r. t.  we get �ä 3tä
tC 4 = �

�C . ∴ The error relation is ∆ä
ä = �

�C (∆). 
∴ 3∆ä

ä 4 100 = �
� 3∆C

C 4 100  
        = �

�      (since percentage error in  = 1) 
∴ Percentage error in = �

� . 
(ii) In (1) taking logarithm and differentiating w. r. t. ? 
�
ä 3tä

tD4 = − �
�D . 

∴ ∆ä
ä = − �

� 3∆D
D 4. 

∴ 3∆ä
ä 4 100 = − �

� 3∆D
D 4 100  

        = 3− �
�4 (0.04) = −(0.02). 

∴ Percentage error in Ù = −0.02. ∴ Ù is decreased by 0.02%. 
 

Example 6 

The radius of a sphere is measured and it is 18 c. m. If an error of 0.08 c. m. 

is made in the value of radius find the percentage error in the volume of 

the sphere. 

Solution 

Let ¼ be the radius of the sphere. 
∴ Volume of the sphere � = 5

9  � ¼9. 
Taking logarithm and differentiating w. r. t. ¼. 
�� 3t�

tÂ4 = 9
Â . ∴ The error relation is ∆�� = 3 3∆Â

Â 4. 
∴ 3∆�� 4 100 = 3 3∆Â

Â 4 100 = 3 3�.��
�� 4 100 = 5

9 . ∴ Percentage error in the volume = 5
9 . 

 

Example 7 

The area of a triangle is calculated from the angle � and Á and the side d. If 
a small error !� is made in measuring A show that the percentage error in 

the area is 3 ��� OPQ ó
OPQ	 OPQ(	�ó)4 !� approximately. 
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Solution 

Let Ø be the area of the ∆��Á. 
Then Ø = �

� d~ sin � 
 = �

� d 3g OPQ ó
OPQ
 4 sin �             3since g

OPQ
 = �
OPQ ó4  

 = 3g�
� 4 OPQ	 OPQ ó

OPQ(	�ó)   
Taking logarithm and differentiating w. r. t. �,  
�� 3t�

t	4 = opO	
OPQ	 − opO(	�ó)

OPQ(	�ó) . 
∴ The error relation is ∆�� = ^opO	

OPQ	 − opO(	�ó)
OPQ(	�ó)_ ∆�. 

       = OPQ ó
OPQ	 OPQ(	�ó)  !�. 

∴ 3∆�� 4 100 = 3 ��� OPQ ó
OPQ	 OPQ(	�ó)4 !� which is the percentage error in Ø. 

 

Exercise 2 

1. The radius of a sphere was measured and found to be 21 cm with a 

possible error in measurement of atmost 0.05 cm. What is the maximum 

error in using this value of the radius to compute the volume of the 

sphere? 

2. The time of swing T of a pendulum is given by Ù = *√ where * is a 
constant. Determine the percentage error in the time of swing if the 

length of the pendulum  changes from 32.1 cm to 32.0 cm.   

3. A circular template has a radius of 10 cm (±0.02). Determine the 

possible error in calculating the area of the templates. Find also the 

percentage error. 

 

3.2.2 Approximations in the case of functions of several variables 

Total differential 

 Let § = �(	, u) be a function of two variables with continuous 
first order partial derivatives. 

 Then ∆§ = �(	 + ∆	, u + ∆u) − �(	, u)  is called the total 

increment of §. Now , ∆§ = �(	 + ∆	, u + ∆u) − �(	, u + ∆u) + �(	, u + ∆u) − �(	, u). 
      = ��(	 + L�∆	, u + ∆u)∆	 + �b(	, u + L�∆u)∆u   
where 0 < L� < 1; 0 < L� < 1. 
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Now, since the partial derivatives �� and �b are continuous, lim∆�,∆b→� ��(	 + L�∆	, u + ∆u) = ��(	, u) and  
lim∆�,∆b→� �b(	, u + L�∆u) = �b(	, u). 

∴ ��(	 + L�∆	, u + ∆u) = ��(	, u) + �� and  �b(	, u + L�∆u) = �b(	, u) + ��  where �� and �� → 0 as ∆	 and ∆u → 0. ∴  ∆§ = ��(	, u)∆	 + �b(	, u)∆u + ��∆	 + ��∆u   (1) 

Now, let ∆õ = @(∆	)� + (∆u)�A�/�. 
Then �� ∆�

∆� and �� ∆b
∆� → 0 as ∆õ → 0. 

∴ ��∆	 + ��∆u is an infinitesimal of higher order relative to ∆õ. 
Now, in (i) ��(	, u)∆	 + �b(	, u)∆u  is linear in ∆	 and ∆u arc is 

called the principal part of the increment ∆§ and it differs from ∆§ by an 
infinitesimal of higher order relative to ∆õ. The expression �§ = ÄB

Ä� ∆	 +
ÄB
Äb ∆u is called the total differential of �(	, u). 
   ∴ ∆§ = �§ + ��∆	 + ��∆u  and ∆§  differs from �§  by an 

infinitesimal of higher order relative to ∆õ. Hence �§ = ∆§ approximately. 

 The increments ∆	 and ∆u of the independent variables 	 and u 
are called the differentials and we denote them by �	 and �u respectively. 
Then the total differential takes the form �§ = ÄB

Ä� �	 + ÄB
Äb �u. 

 

Note 

1. This idea of total differential can be generalized to functions of 

several variables. 

 2. Since the total differential �§ is approximately equal to the total 

increment ∆§, we can calculate the error in § due to the error in the 
independent variables. 

 

Example 8 

The range v of a projectile which starts with a velocity | at an elevation < 
is given by v = (|� sin 2<)/?. Find the percentage error in v due to an 
error of 1% in | and error of ��% in <. 
 

Solution 

We have v = (|� sin 2<)/?.  
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Taking logarithm and differentiating totally,  
tß
ß = 2 3t}

} 4 + 2 cot 2<  �<. 
∴ The error relation is ∆ß

ß = 2 3∆}
} 4 + 2 cot 2< ∆<. 

∴ 3∆ß
ß 4 100 = 2 3∆}

} 4 100 + 2< cot 2<  3∆ê
ê 4 100. 

         = 2(1) + 2< cot 2< 3�
�4. 

         = 2 + < cot 2<. 
The percentage error in v is 2 + < cot 2<. 
Example 9 

The focal length of a mirror is given by the formula 
�
} − �

c = �
B . If equal 

errors ! are made in the determination of { and |, show that the relative 
error in the focal length is given by 3�

c + �
}4 !. 

Solution �
} − �

c = �
B ⇒ � = �c}

c�} . 
Taking logarithm and differentiating totally we get  
tB
B = tc

c + t}
} − tc�t}

c�}  . 

∴ The error relation is ∆B
B = ∆c

c + ∆}
} − ∆c�∆}

c�}  

        = �
c + �

} − ���
c�} = 3�

c + �
}4 !. 

Hence the result. 

 

Example 10 

Find the percentage error in calculating the area of a rectangle when an 

error of 2% is made in measuring its sides. 

Solution 

Let 
 and d be the length and breadth of the rectangle. ∴ Area Ø = 
d. ∴ log Ø = log 
 + log d. 
Differentiating we get 

t�� = t&
& + tg

g  . ∴ 3∆�� 4 100 = 3∆&
& 4 100 + 3∆g

g 4 100 = 2 + 2 = 4. 
∴ 4% error is made in calculating the area when there is an error of 2% in 

measuring the sides. 
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Example 11 

A triangle ��Á  is inscribed in a fixed circle. If the vertices be moved 

slightly on the circle prove that 
∆&

opO	 + ∆g
opO
 + ∆�

opO ó = 0  where ∆
  is 

absolute error in 
 etc. 
Solution 

Since ∆��Á inscribed in a fixed circle we have 
 = 2v sin � ; d = 2v sin� 
and ~ = 2v sin Á where v is the circum-radius of the triangle ��Á. 
Thus the error relations are 

  ∆
 = 2v cos � (∆�). 
  ∆d = 2v cos� (∆�). 
  ∆~ = 2v cos Á (∆Á). 
∴ ∆&

opO	 + ∆g
opO
 + ∆�

opO ó  = 2v(∆� + ∆� + ∆Á). 
   = 2v ∆(� + � + Á). 
   = 2v(∆�). 
   = 0 (since � is constant). 
∴ ∆&

opO	 + ∆g
opO
 + ∆�

opO ó = 0. 
 

Example 12 

In a triangle ��Á the angles and the sides d and ~ are made to vary in such 

a way that the area remains constant. Show that if d and ~ vary by small 

amounts !d and !~ respectively then !d cos� + !~ cos Á = 0. 
Solution 

In any triangle we have the relation Ø = �
� d~ sin � where Ø is the area of 

the triangle ��Á. 
Taking logarithm and differentiating we get 

t�� = 3tg
g 4 + 3t�

� 4 + cot �  ��. 
Error relation is 

∆�� = ∆g
g + ∆�

� + cot � ∆�. 
Since, by hypothesis, Ø is constant ⇒ ∆Ø = 0 we have 
0 = �g

g + ��
� + cot � (−∆� − ∆Á)     (1) 

   (since � + � + Á = � ⇒ ∆� + ∆� + ∆Á = 0) 
Also Ø = �

� 
~ sin�. 
∴ ∆�� = ∆�

� + cot�  ∆�. 
0 = ��

� + cot� ∆�. 
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∴ ∆� = − ��
� tan�. 

Similarly, ∆Á = − �g
g tan Á. 

From (1) 

0 = ∆g
g + ∆�

� + cot � 3��
� tan� + �g

g tan Á4. 
   = �g

g (1 + cot � tan Á) + ��
� (1 + cot � tan�). 

   = �g
g 31 + opO	 OPQ ó

OPQ	 opO ó4 + ��
� 31 + opO	 OPQ


OPQ	 opO
4. 
   = 3�g

g 4 OPQ(	�ó)
OPQ	 opO ó + 3��

� 4 OPQ(	�
)
OPQ	 opO
 . 

   = 3�g
g 4 OPQ


OPQ	 opO ó + 3��
� 4 OPQ ó

OPQ	 opO
 . 
   = �g

opO ó + ��
opO
  .   (since 

OPQ

g = OPQ ó

� ) 

∴ !d cos� + !~ cos Á = 0. 
Exercise 3 

1. The work that must be done to propel a ship of displacement Å for a 
distance ¿  in time ¢  is proportional to ª���[�

£� « . Estimate roughly the 

percentage increase or decrease of work necessary when the distance is 

increased by 1% the time is diminished by 1% and the displacement of the 

ship is diminished by 3%. 

2. The side 
 of a triangle ��Á is calculated from the sides d and ~ and 
angle �. If small errors !~, !d, !� are made in the values of ~, d and � 
respectively prove that the error !
 in the calculated value of 
 is equal to cos�  !~ + cos Á  !d + d sin Á  !�. 
 

3.3 Jacobians 

 In this section we introduce the concept of Jacobian of a 

transformation which plays a vital role in change of variables in any 

transformation of one coordinate system to another. This concept is useful 

in any transformation of one coordinate system to another. This concept is 

useful in the theory of integral calculus in the evaluation of double and 

triple integrals. 
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Definition 

 Consider the transformation given by 	 = 	({, |), u = u({, |) 
where the function 	 and u have continuous first order partial derivatives. 
Then the Jacobian of the transformation is defined as 

� = ��	�{ �	�|�u�{ �u�|
� 

The Jacobian � is also denoted by = Ä(�,b)
Ä(c,}) . 

Hence � = Ä(�,b)
Ä(c,}) = �Ä�

Äc
Ä�
Ä}Äb

Äc
Äb
Ä}
�. 

For a transformation in three variables 	 = 	({, |,�), u = u({, |,�), § = §({, |,�) the Jacobian � is given by the 
following determinant of order three. 

� = �(	, u, §)�({, |,�) = �
��	�{ �	�| �	���u�{ �u�| �u���§�{ �§�| �§���

�
 

 

Example 13 

The transformation from Cartesian coordinates (	, u) to polar coordinates (¼, L) is given by 	 = ¼ cos L and u = ¼ sin L. 
Solution 

∴ � = �Ä�
ÄÂ

Ä�
ÄIÄb

ÄÂ
Äb
ÄI
� = 7cos L −¼ sin Lsin L ¼ cos L 7 = ¼. 

 

Example 14 

The transformation from Cartesian coordinates (	, u, §) to cylindrical polar 
coordinates (¼, L, §) is given by 	 = ¼ cos L , u = ¼ sin L , § = §. 
Then � = Ä(�,b,¨)

Ä(c,},�) = �cos L −¼ sin L 0sin L ¼ cos L 00 0 1� = ¼. 
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Example 15 

The transformation from Cartesian coordinates (	, u, §) to cylindrical polar 
coordinates (¼, L, Ñ)  is given by 	 = ¼ sin L cos Ñ , u = ¼ sin L sin Ñ , § =¼ cos L. 
Then � = Ä(�,b,¨)

Ä(Â,I,Ò) = �sin L cos Ñ ¼ cos L cos Ñ −¼ sin L sin Ñsin L sin Ñ ¼ cos L sin Ñ ¼ sin L cos Ñcos L −¼ sin L 0 � 
= sin L cos Ñ (¼� sin� L cos Ñ) − ¼ cos L cos Ñ (−¼ sin L cos L cos Ñ)− ¼ sin L sin Ñ @−¼ sin� L sin Ñ − ¼ cos� L sin ÑA = ¼�@sin9 L (cos� Ñ + sin� Ñ) + cos� L sin L (cos� Ñ + sin� Ñ)A  = ¼�(sin9 L + cos� L sin L)  = ¼� sin L (sin� L + cos� L) = ¼� sin L. 

 

Example 16 

Consider the transformation 	 + u = {, 2	 − 3u = |. 
Solving the two equations we get 	 = 9

`  { + �
`  | and u = �

`  { − �
`  |. 

∴ � = �(	, u)�({, |) = �35 1525 − 15
� = − 15 

Note Hence { and | are functions of 	 and u. The Jacobian �x of { and | w. 
r. t. 	 and u can be written as �x = Ä(c,})

Ä(�,b) = �Äc
Ä�

Äc
ÄbÄ}

Ä�
Ä}
Äb
� = 71 12 −37 = −5. 

 

Properties of Jacobians 

Result 1 

Let 	 = 	({, |); u = u({, |). If � = Ä(�,b)
Ä(c,}) and �x = Ä(c,})

Ä(�,b) then ��x = 1. 
Proof 

Since 	 = 	({, |) and u = u({, |) we shall assume that we can solve these 

equations to obtain the values of { and | in terms of 	 and u. Hence we 
have { = {(	, u) and = |(	, u) . 
We have 

Ä�
Ä� = 1; Äb

Äb = 1; Ä�
Äb = 0 = Äb

Ä� . 
Now, 

Ä�
Ä� = 1 ⇒ Ä�

Äc
Äc
Ä� + Ä�

Ä}
Ä}
Ä� = 1   
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Ä�
Äb = 0 ⇒ Ä�

Äc
Äc
Äb + Ä�

Ä}
Ä}
Äb = 0. 

Äb
Ä� = 0 ⇒ Äb

Äc
Äc
Ä� + Äb

Ä}
Ä}
Ä� = 0. 

Äb
Äb = 1 ⇒ Äb

Äc
Äc
Äb + Äb

Ä}
Ä}
Äb = 1. 

Now, ��x = Ä(�,b)
Ä(c,}) × Ä(c,})

Ä(�,b) = �Ä�
Äc

Ä�
Ä}Äb

Äc
Äb
Ä}
� × �Äc

Ä�
Äc
ÄbÄ}

Ä�
Ä}
Äb
� 

     = �Ä�
Äc

Äc
Ä� + Ä�

Ä}
Ä}
Ä�

Ä�
Äc

Äc
Äb + Ä�

Ä}
Ä}
ÄbÄb

Äc
Äc
Ä� + Äb

Ä}
Ä}
Ä�

Äb
Äc

Äc
Äb + Äb

Ä}
Ä}
Äb
� 

     = 71 00 17 = 1  
∴ ��x = 1. 
 

Result 2 

If { and | are functions of ¼ and ¿ and ¼ and ¿ are functions of 	, u  then 
Ä(c,})
Ä(Â,ï) × Ä(Â,ï)

Ä(�,b) = Ä(c,})
Ä(�,b) . 

 

Proof 

Ä(c,})
Ä(Â,ï) × Ä(Â,ï)

Ä(�,b)   = �Äc
ÄÂ

Äc
ÄïÄ}

ÄÂ
Ä}
Äï
� × �ÄÂ

Ä�
ÄÂ
ÄbÄï

Ä�
Äï
Äb
�  

  = �Äc
ÄÂ

ÄÂ
Ä� + Äc

Äï
Äï
Ä�

Äc
ÄÂ

ÄÂ
Äb + Äc

Äï
Äï
ÄbÄ}

ÄÂ
ÄÂ
Ä� + Ä}

Äï
Äï
Ä�

Ä}
ÄÂ

ÄÂ
Äb + Ä}

Äï
Äï
Äb
�  

  = �Äc
Ä�

Äc
ÄbÄ}

Ä�
Ä}
Äb
� = Ä(c,})

Ä(�,b) . 

 

Example 17 

If { = ��b
���b and | = tan�� 	 + tan�� u find Ä(c,})

Ä(�,b) . 
Solution 

Äc
Ä� = (���b)�(��b)b

(���b)� = ��b�
(���b)� . 

Similarly, 
Äc
Äb = ����

(���b)� ;  Ä}
Ä� = �

���� ;  Ä}
Äb = �

��b� . 
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Now, 
Ä(c,})
Ä(�,b) = �Äc

Ä�
Äc
ÄbÄ}

Ä�
Ä}
Äb
� = � ��b�

(���b)� ����
(���b)�

�
���� �

��b�
� 

        = �
(���b)� − �

(���b)� = 0  
 

Example 18 

If { = 2	u, | = 	� − u�, 	 = ¼ cos L , u = ¼ sin L find Ä(c,})
Ä(Â,I) . 

 

Solution { = 2	u = 2¼� cos L sin L. 
   = ¼� sin 2L. | = 	� − u� = ¼� cos� L − ¼� sin� L  
    = ¼� cos 2L. 
Now 

Ä(c,})
Ä(Â,I) = �Äc

ÄÂ
Äc
ÄIÄ}

ÄÂ
Ä}
ÄI
� = 72¼ sin 2L 2¼� cos 2L2¼ cos 2L −2¼� sin 2L7  

       = −4¼9(sin� 2L + cos� 2L). 
       = −4¼9. 
 

Example 19 

If { = 	 + u + §       (1) {| = u + §        

 (2) {|� = §        

 (3) 

Show that 
Ä(�,b,¨)
Ä(c,}�) = {�| . 

Solution 

First we solve for 	, u, § in terms of {, |,�. (2) ⇒ u = {| − §. 
      ⇒ u = {| − {|� = {|(1 − �). (1) ⇒ { = 	 + (u + §) ⇒ { = 	 + {|  
      ⇒ 	 = {(1 − |). (3) ⇒ § = {|�. 
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Now  
Ä(�,b,¨)
Ä(c,},�) = ��

Ä�
Äc

Ä�
Ä}

Ä�
Ä�Äb

Äc
Äb
Ä}

Äb
Ä�Ä¨

Äc
Ä¨
Ä}

Ä¨
Ä�
�� 

 = � 1 − | −{ 0|(1 − �) {(1 − �) −{||� {� {| �   
 = (1 − |)@{�|(1 − �) + {�|�A + {@{|�(1 − �) + {|��A  
 = {�| − {�|� + {�|�. 
 = {�|. 
 

Example 20 

If 	 = { cos | , u = { sin | prove that Ä(�,b)
Ä(c,}) × Ä(c,})

Ä(�,b) = 1. 
Solution 

Given 	 = { cos |      

 (1) u = { sin |        

 (2) 

∴ Ä(�,b)
Ä(c,}) = 7cos | −{ sin |sin | { cos | 7 = {. 

Also from (1) and (2) we get { = �	� + u� and | = tan��(u/	) 
∴ Ä(c,})

Ä(�,b) = �Äc
Ä�

Äc
ÄbÄ}

Ä�
Ä}
Äb
� = � �

����b�
b

����b�
− b

���b� �
���b�

�  
 = ��

(���b�)[/� + b�
(���b�)[/� . 

 = ���b�
(���b�)[/� . 

 = �
����b� . 

 = �
c . 

Now, 
Ä(�,b)
Ä(c,}) × Ä(c,})

Ä(�,b) = { × �
c = 1. 

 

Example 21  

If { = b¨
� , | = ¨�

b ,� = �b
¨  prove that 

Ä(c,},�)
Ä(�,b,¨) = 4. 

 



95 

Differential and integral calculus 

Solution 

Ä(c,},�)
Ä(�,b,¨) = ��

Äc
Ä�

Äc
Äb

Äc
Ä¨Ä}

Ä�
Ä}
Äb

Ä}
Ä¨Ä�

Ä�
Ä�
Äb

Ä�
Ä¨
�� = ��−

b¨
�� ¨

�
b
�¨

b − ¨�
b� �

bb
¨

�
¨ − �b

¨�
��  

 = �
�b¨ ��

− b¨
� § u

§ − ¨�
b 	

u 	 − �b
¨
��   

 = �
�b¨ ^− b¨

� (	� − u�) − §(−	u − 	u) + u(	§ + 	§)_   
 = �

�b¨ @0 + 2	u§ + 2	u§A = 4.  
 

Exercise 4 

1. Find the Jacobian of the following transformations. 

    (i) 2	 + 3u = {; 	 − 2u = |.        (ii) { = �[
b ; | = b[

�  
    (iii) 	 = ¼ sin L cos Ñ , u = ¼ sin L sin Ñ , § = ¼ cos L. 
    (iv) 	 = {(1 + |);  u = |(1 + {) 
2. If 	 = Sc cos | and u = Sc sin | show that  Ä(�,b)

Ä(c,}) × Ä(c,})
Ä(�,b) = 1.  

3. If { = 	 + u; | = 	 − u and 	 = ¼ cos L ; u = ¼ sin L  prove that Ä(c,})
Ä(�,b) ×

Ä(�,b)
Ä(Â,I) = Ä(c,})

Ä(Â,I) 
4. If { = �

���Â� ; | = b
���Â� ;� = ¨

���Â� where ¼� = 	� + u� + §� prove that 
Ä(c,},�)
Ä(�,b,¨) = (1 − ¼�)��� . 
5. If 	 = S} sec {  and u = S} tan { , find the Jacobians Ä(�,b)

Ä(c,})  and 
Ä(c,})
Ä(�,b)  . 

Verify that 
Ä(�,b)
Ä(c,}) . Ä(c,})

Ä(�,b) = 1. 
Answers 

1. (i) − �
½             (ii) 

�
�√c}          (iii) – ¼� cos L          (iv) 1 + { + |. 
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3.4 Multiple point 

 On some curves there exist some special points through which 

more than one branch of the curve pass. Such points are called singular 

points. 

 In this section we classify various types of singular points lying on 

a curve. 

 

Multiple points 

Definition 

If ¼ branches of a curve pass through a point then that point is 
called a multiple point of ¼£r  order. 

A multiple point of order two is called a double point. 

Note In general there are ¼ tangents one for each branch at a multiple 

point of order ¼. All the tangents need not be distinct and real. Hence we 
can classify the multiple points according to the nature of the tangents at 

the multiple points. 

 

Classification of double points 

Definition 

 A double point P is called a node if the two tangents at P are real 

and distinct. In this case two real branches of the curve pass through the 

point P. 

 A double point P is called a cusp if the two tangents at P are real 

and coincident. In this case two real branches of the curve touch at the 

point P. 

 If the tangents at P are imaginary then there are no real points on 

the curve in the immediate neighbourhood of the point. Such a point is 

called a conjugate point. Hence a conjugate point is an isolated point 

whose coordinates satisfy the equation of the curve. 

 If the two branches of the curve at a cusp P lie on the opposite 

sides of the common tangent then P is called a cusp of the first kind or 

cusp of the first species.  

 If the two branches of the curve at a cusp P lie on the same side of 

the common tangent then P is called a cusp of the second kind or cusp of 

the second species. 

Condition for a point (	, u) to be a multiple point of the curve �(	, u) = 0. 
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 Let the curve be �(	, u) = 0    

 (1) 

Differentiating (1) with respect to 	 we get  
�� + �b 3tb

t�4 = 0       (2) 

Where ��  and �b  denote the partial derivatives with respect to 	  and u 
respectively. 

 At a multiple point the curve has more than one tangent. Hence 

3tb
t�4 must have more than one value at a multiple point. 

 But equation (2) is of first degree in 3tb
t�4. Hence 3tb

t�4 can have 
more than one value if and only if �� = �b = 0. 
 ∴ A point (	, u) on the curve �(	, u) = 0 is a multiple point if and 

only if �� = �b = 0. 
 

Working rule 

 To find the multiple points on the curve we have to find those 

values (	, u) which simultaneously satisfy the three equations �(	, u) = 0; ��(	, u) = 0; �b(	, u) = 0. 
 

The nature of the double point 

 Let (	, u) be a double point on the curve �(	, u) = 0. 
 Then ��(	, u) = 0; �b(	, u) = 0. 

We assume that �(	, u)  has continuous partial derivatives of 
second order and they are not zero. 

 Now, differentiating (2) with respect to 	 we get  
��� + ��b 3tb

t�4 + �b� 3tb
t�4 + �bb 3tb

t�4� + �b 3t�b
t��4 = 0. 

∴ ��� + 2��b 3tb
t�4 + �bb 3tb

t�4� = 0      (3) 

     (∵ �b = 0 and ��b = �b� ) 
 Equation (3) is a quadratic in 

tb
t� . 

 Since ���, ��b and �bb are not all zero, two roots tb
t� given by (3) will 

be real and distinct or coincident or imaginary according as the 

discriminant of the quadratic equation (3) is greater than zero or equal to 

zero or less than zero. 
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 The discriminant is given by 4\��b]� − 4����bb . 
 ∴ The point is a node if \��b]� − ����bb > 0. 
 The point is a cusp if \��b]� − ����bb = 0. 
 The point is a conjugate point if \��b]� − ����bb < 0. 
 

Note  

 1. The above conditions for the nature of double points are in fact 

the conditions for two tangents at the double point to be real and distinct 

or coincident or imaginary. Hence it cannot be always taken as a test for 

node cusp or conjugate point. 

2. The nature of the double point of a curve can be achieved by 

shifting the origin to the double point and then testing the nature of 

tangents and existence of the curve in the neighbourhood of the new 

origin. 

[ The equation (equations) of the tangents at the origin is obtained by 

equating to zero the lowest degree terms in the equation of the curve]. 

 3. If ��� = ��b = �bb = 0 then the point (	, u) will be a multiple 

point of higher order. 

 

Example 22 

Find the position and nature of the double points of the curve 
5u� =	5(2	� − 3
�). 
Solution 

Let �(	, u) = 2	a − 3
�	5 − 
5u� = 0    (1) ∴ �� = 12	` − 12
�	9      ��� = 60	5 − 36
�	�. ��b = 0. �b = −2
5u  �bb = −2
5 . 
The double point are got from �� = 0 and �b = 0. 
Now �� = 0 ⇒ 12	` − 12
�	9 = 0 
          ⇒ 12	9(	� − 
�) = 0. 
          ⇒ 	 = 0, 
, −
. 
Also, �b = 0 ⇒ −2
5u = 0 
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          ⇒ u = 0. 
Hence the double points are (0, 0), (
, 0), (−
, 0). 
Of these three points, only (0, 0) lies on the curve.  ∴ (0, 0) is the only double point. 
At (0, 0), ��� = 0; �bb = −2
5; ��b = 0. 
Now, \��b]� − ����bb = 0 − 0 × (−2
5) = 0. ∴ The double point (0, 0) is a cusp. 
But form (1), u = ± ��

&� √2	� − 3
�. 
Hence for small values of 	, positive or negative, 2	� − 3
� is a negative. 
Hence u is imaginary. ∴ No portion of the curve lies in the neighbourhood of the origin.  
Hence the origin is a conjugate point but not a cusp. 

 

Example 23 

Find the position and nature of the double points of the curve 	9 + 	� +u� − 	 − 4u + 3 = 0. 
Solution 

Let �(	, u) = 	9 + 	� + u� − 	 − 4u + 3 = 0   (1) ∴ �� = 3	� + 2	 − 1; ��� = 6	 + 2; ��b = 0  
�b = 2u − 4; �bb = 2. 
The double points are got from �� = 0 and �b = 0. 
Now �� = 0 ⇒ 3	� + 2	 − 1 = 0 
          ⇒ (3	 − 1)(	 + 1) = 0. 
          ⇒ 	 = −1, �

9 . 
Now �b = 0 ⇒ 2u − 4 = 0 
          ⇒ u = 2. 
∴ The possible double points are (−1, 2) and 3�

9 , 24. 
We note that out of the two points only (−1, 2) lies on the curve  
Hence (−1, 2) is the only double point. 
At (−1, 2), ��b = 0; ��� = −4; �bb = 2. 
∴ At (−1, 2), \��b]� − ����bb = 0 − (−4) × 2 = 8 > 0. 
Hence the double point (−1, 2) is a node. 
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Example 24 

Find the position and nature of the double points of the curve 	9 +3	�u − 4u9 − 	 + u + 3 = 0. 
Solution 

Let �(	, u) = 	9 + 3	�u − 4u9 − 	 + u + 3 = 0   (1) ∴ �� = 3	� − 6	u − 1; �b = 3	� − 12u� + 1. 
The double points are got from �� = 0 and �b = 0. 
Now �� = 0 ⇒ 3	� + 6	u − 1 = 0     

 (2) �b = 0 ⇒ 3	� − 12u� + 1 = 0     (3) 

From (2) we get u = ��9��
a� . 

Using (2) in (3) we get 3	� − 12 3��9��
a� 4� + 1 = 0 

∴ 9	5 − (1 + 9	5 − 6	�) + 3	� = 0. 
∴ 9	� − 1 = 0. Hence = ± �

9 . 
Substituting the values of 	 in (3) we get 12u� = 5

9 . Hence = ± �
9 . 

The possible double points are 3�
9 , �

94 , 3�
9 , − �

94 , 3− �
9 , �

94 , 3− �
9 , − �

94. 
Out of these four points none satisfies the equation (1). 

Hence there are no double points for the given curve. 

 

Exercise 5 

Find the position and nature of the double points on the following curves 

(i) 	�(	 − u) + u� = 0                (ii) 	9 + u9 − 12	 − 27u + 70 = 0 
(iii) 	u� − 
	� + 2
�	 − 
9 = 0. 
Answers  

(i) cusp at (0,0)     (ii) Conjugate point at (0, 0)    (iii) node at (
, 0) 
 

Kinds of cusps 

 Of the three types of double points the cusp can be distinguished 

as two special kinds according to the nature of the curve at the cusp. 

 We know that at a cusp two branches of a curve have a common 

tangent and hence the have a common normal also. 
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Single cusp 

 A cusp is said to be a single cusp if the two branches of the curve 

lie entirely on one side of the common normal at the cusp. 

Double cusp  

 A cusp is said to be a double cusp if the two branches of the curve 

extend to both sides of the common normal at the cusp. 

 

Cusp of first kind (first species) 

 If the branches of the curve lie on opposite sides of the common 

tangent at the cusp, the cusp is called the cusp of the first kind. 

 

Cusp of second kind (second species) 

 If the branches of the curve lie on the same side of the common 

tangent at the cusp, the cusp is called the cusp of the second kind. 

 

Working rule to find the nature of the cusp at the origin 

Case 1: The cuspidal tangents are u� = 0 
 In this case solve the given equation for u  neglecting terms 

containing powers of u higher than two. 
 (i) Single cusp: if the roots are real for one sign of 	. 
 (ii) Double cusp: if the roots are real for both signs of 	. 
 (iii) First species: if the roots are opposite in sign. 

 (iv) Second species: if the roots are of the same sign. 

Case 2: The cuspidal tangents are 	� = 0 
 In this case solve the given equation for 	  neglecting terms 

containing powers of 	 higher than two. 
 (i) Single cusp: if the roots are real for one sign of u. 
 (ii) Double cusp: if the roots are real for both signs of u. 
 (iii) First species: if the roots are opposite in sign. 

 (iv) Second species: if the roots are of the same sign. 

Case 3: The cuspidal tangents are (
	 + du)� = 0. 
 In this case put   = 
	 + du and eliminate u or 	 (whichever is 
convenient) from the given equation of the curve. Suppose we eliminate u 
then we get an equation in   and 	. Solve the equation for   (neglecting  9 and higher power of  ). Nature of the cusp will be decided as in case 1 
(taking   for u) or case 2 (taking   for 	). 
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Case 4: Nature of the cusp at a point other than the origin  

 Transfer the origin to that point and proceed as in case 1 or case 2 

or case 3 as the case may be.  

 

Example 25 

Show that the curve u�(2
 − 	) = 	9 has a single cusp of first species at 
the origin. 

Solution 

 The equation of the curve is 	9 + 	u� − 2
u� = 0  (1) 

Equating to zero the lowest degree terms we get −2
u� = 0. ∴ u� = 0, and it’s roots are real and coincident. 
Hence the origin is a cusp or a conjugate point. 

From (1), we get = ±	� �
�&�� .     (2) 

When 	 is small and positive u is real. Hence real branches of the curve 
pass through the origin. ∴ The origin is a cusp. 
Also from (2), u is real if 	 is small and positive. ∴ The cusp is a single cusp. 
Also for any small and positive value of 	 the two values of u are of 
opposite signs. ∴ The cusp is of first species. 
Hence the origin is a single cusp of first species. 

 

Example 26 

Show that the curve u9 = (	 − 
)�(2	 − 
)  has a single cusp of first 
species at (
, 0). 
Solution 

The equation of the curve is u9 = (	 − 
)�(2	 − 
)  (1) 

Shifting the origin to the point (
, 0)  by putting 	 = Ç + 
, u = É 
equation (1) is transformed to É9 = Ç�(2Ç − 
)   (2) 

 Equating to zero the lowest degree terms we get 
Ç� = 0, whose 
roots are real and coincident. 

 Hence the new origin (
, 0) is a cusp or a conjugate point. 
 From (2) solving for Ç neglecting Ç9 and higher powers of Ç we 
get  
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Ç = ±É�Ê
&       

 (3) 

 When É is small and positive Ç is real. Hence real branches of the 
curve pass through (
, 0). 

Hence (
, 0) is a cusp. 
From (3), for one sign (positive) of É the value of is real. 

   ∴ The cusp is a single cusp. 
 Also for any small and positive value of É the two values of Ç are 
of opposite sign. 

 ∴ The cusp is of first species. 
 Hence (
, 0) is a single cusp of first species. 
 

Exercise 6 

1. Show that the curve u�(2
 − 	) = 	9 has a single cusp of the first 
species at the origin. 

2. Show that the curve u9 = 	9 + 
	� has a single cusp of first species at 
the origin.  

 

3.5 Curve Tracing  

 We are familiar with some standard curves such as the straight 

line, circle, parabola, ellipse, hyperbola whose equations in standard forms 

are respectively u = >	 + ~; 	� + u� = 
�; u� = 4
	; ��
&� + b�

g� = 1  and 

��
&� − b�

g� = 1. 
 If an equation �(	, u) = 0 can be reduced to the above standard 
forms the curve represented by the equation can easily be traced with 

their known properties. 

 In this section we discuss the methods of tracing the curve whose 

equations are given in terms of Cartesian coordinates, polar coordinates, 

and parametric coordinates. 

 The aim of curve tracing is to find an approximate shape of the 

curve. The knowledge of the nature and shape of the curves are useful 

when we evaluate length, areas, volumes, surface areas etc of a bounding 

curve. 
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A: Tracing of curves �(�,�) = � (Cartesian Coordinates) 
Suppose a curve is represented in terms of Cartesian coordinates 

by the equation �(	, u) = 0 . The following points provide useful 

information’s regarding the shape and nature of the curve.   

 

I. Symmetry of the curve 

(a) Symmetry about the �-axis: 
 A curve �(	, u) = 0 is symmetric about the 	-axis if �(	, −u) =�(	, u). 
 

Example u� = 4
	; 	� + u� = 
�; u5 + u� + 	9 = 0 are curves which are 
symmetric about the 	-axis. 
But 	� + u� = 
u is not symmetric about the 	-axis. 
(b) Symmetry about the �-axis 

A curve �(	, u) = 0 is symmetric about the u-axis if �(−	, u) =�(	, u). 
 

Example 	� = 4
u; 	� + u� = 
�; u = 	5 + 	� + 
  are symmetric about u-axis. 
But 	� + u� = 
	 is not symmetric about the u-axis. 
Note 	� + u� = 
� is symmetric about 	-axis and u-axis. In this case the 
equation involves even and only even powers of 	 as well as u. 
 

(c) Symmetry about the line � = �. 
 If �(	, u) = �(u, 	) then the curve is symmetric about the line u =	. 
 

Example 	� + u� = 
�; 	9 + u9 = 3
	u; 	u = ~�  are symmetric about 

the line u = 	. 
(d) Symmetric about the origin. (Symmetric in opposite quadrants)  

 If �(−	, −u) = �(	, u)  then the curve is symmetric about the 

origin (symmetric in opposite quadrants). 

 

Example  	� + u� = 
�; 	u = ~� are symmetric about the origin. 	9 + u9 = 3
	u; u� = 	9 are not symmetric about the origin. 
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II. Points of intersection with the coordinate axes 

 To obtain the points where the curve �(	, u) = 0 intersects the 	-
axis put u = 0 in the equation and solve for 	. Similarly, to find the points 

where the curve intersects the u-axis put 	 = 0 in the equation and solve 
for u. 
Example The curve 	� + u� = 
� crosses the 	-axis at (
, 0) and (−
, 0) 
and crosses the u-axis at (0, 
) and (0, −
). 
The curve u� = 4
	 passes through the origin. 
 

III. Region in which the curve lies. 

 If the equation of the curve �(	, u) = 0 can be expressed in the 
form u = ?(	) we determine the values of 	 for which u is imaginary or u 
is not defined. No portion of the curve lies in the corresponding region. 

 Similar information can be obtained if the equation of the curve 

can be expressed in the form 	 = ?(u). 
Example The curve u�(
 − 	) = 	9 can be written as = 	� �

&�� . Clearly u 
is imaginary when 	 > 
 or 	 < 0. Hence the curve does not lie on the left 
of the u-axis and to the right of the line 	 = 
. 
 

IV. Tangents to the curve 

(a) Tangents at the origin 

 If the origin is found to be a point on the curve then the tangents 

at the origin are obtained by equating to zero the lower degree terms 

occurring in the equation. 

Example u� = 4
	  passes through the origin and lower degree term 

occurring in it is 4
	 which when equated to zero becomes 4
	 = 0 (i.e.) 	 = 0. Hence u-axis is the tangent to the parabola at the origin. 
Also 	9 + u9 = 3
	u passes through the origin at which 	 = 0 and u = 0 
are the tangents. 

For the curve 
�u� = 
�	� − 	5, u = ±	 are the tangents at the origin. 
(b) Tangents at any other point (º,�) other than the origin 
 Find 

tb
t� at (ℎ, *) and it gives the slope of the tangent to the curve 

at this point. This will be useful to decide the nature of the tangent – 

whether parallel to the 	-axis or u-axis or inclined tangent. 
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V. Asymptotes 

 The concept of asymptotes described in the previous chapter will 

be helpful to know about the asymptotes in tracing any curve. 

 

(a) Asymptotes parallel to the �-axis. 
 These are obtained by equating to zero the coefficient of the 

highest power of 	. 
Example (u + 
)	� + 	 − 1 = 0 has an asymptote u = −
 parallel to the 	-axis. 
 

(b) Asymptotes parallel to the �-axis. 
 These are obtained by equating to zero the coefficients of the  

power of u. 
Example u�(4 − 	�) = 	9 − 1 has asymptotes 4 − 	� = 0 (i.e.) 	 = 2 and 	 = −2 are two asymptotes parallel to the u-axis. 
 

(c) Inclined asymptotes 

 Taking u = >	 + ~  as an asymptote we can find >  and ~  by 
substituting u = >	 + ~ in the equation and equating to zero the various 
powers of 	 starting from the highest power. 

Example For the curve 	9 + u9 = 3
	u; 	 + u + 
 = 0  is an inclined 
asymptote. 

 

VI. Special Points 

 Points at which the function is maximum or minimum; the points 

of inflexion; intervals in which the function is increasing or decreasing; 

region of concavity and convexity; multiple points such as cusp, node, 

conjugate points provide useful information’s in determining the shape of 

the curve. 

 Having known all these information’s by inspection or 

investigation we shall trace the curve. 

 

B: Tracing a curve �(ç, è) = � (polar coordinates) 
 To trace a curve given in terms of polar coordinates by the 

equation �(¼, L) = 0 we investigate the following. 
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I. Symmetry of the curve 

(a) Symmetry about the initial line. 

 The curve �(¼, L) = 0 is symmetric about the initial line L = 0 if �(¼, −L) = �(¼, L). 
Example ¼ = 
(1 + cos L);  ¼ = 
(1 − cos L);  ¼ = 
 cos 2L are symmetric 

about the initial line. However ¼ = 
(1 − sin L) is not symmetric about 

the initial line. 

 

(b) Symmetry about the pole  

 The curve is symmetric about the pole if �(−¼, L) = �(¼, L). 
Example ¼� = 
� cos 2L ; ¼� = 
� sin 2L are symmetric about the pole. 

 

(c) Symmetry about = �
Ð . 

 The curve �(¼, L) = 0 is symmetric about the line = m
� . (u-axis) if �(¼, � − L) = �(¼, L). 

Example ¼ = 
(1 + sin L); ¼ = 
 sin 3L are symmetric about = m
� . 

 

II. Tangents at the pole. 

 We put ¼ = 0 in the equation of the curve and solve the resulting 
equation for L. If there exists a real solution < for L, then the curve passes 
through the pole and the line L = < is a tangent to the curve at the pole. 
 

III. Region in which the curves lies. 

 (i) If the maximum value of ¼ is 
, then the curve lies within the 
circle ¼ = 
. 
 (ii) If there exist values of L for which ¼� < 0 so that ¼ becomes 

imaginary then the curve does not exist for those values of L. 
Example ¼� = 
� sin 2L does not exist if m� < L < �. 
 

IV. Value of �. 
 The angle Ñ which a tangent at (¼, L) makes with the initial line is 

found from the formula tan Ñ = ¼ tI
tÂ . 
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V. Asymptotes 

 If there is no finite value < for L such that ¼ → ∞, then the curve �(¼, L) = 0  has no asymptotes. 

VI. Points on the curve 

 Giving different values for L we can get different points on the 
curve which will be of use in tracing the curve and ascertain whether ¼ 
increases or decreases in the region. 

 

C: Tracing a curve � = �(¹),� = �(¹) (Parametric equations) 
 (i) Suppose 	 = �(¢), u = ?(¢)  are parametric equations of a 

curve where t is the parameter. 

 If it is possible to eliminate the parameter between the two 

equations and get the Cartesian form of the curve we proceed as in the 

case of Cartesian coordinates. 

 (ii) If the parameter ¢ cannot be easily eliminated 

(a) Find 
tb
t� = tb

t£ × t£
t� . 

(b) Give different values to the parameter ¢ and find, , u, tb
t� . This gives 

different points on the curve and slopes of the tangents at these points. 

(c) We plot the points and trace the curve. 

 

Example 27 

Trace the curve u� = 
	9 (semi cubical parabola) 

Solution 

The curve is symmetric about 	-axis. 
It passes through the origin. 

It has a tangent u = 0 (	-axis) at (0,0). 
The curve has no asymptotes. 

Since u is imaginary when 	 < 0 no part of the curve lies to the 
left of the u-axis. 

The curve does not cut the axis except at the origin. 

Since the 	-axis is the tangent and the curve is symmetric about 

the 	-axis the two branches of the curve lie on either side of the tangent. 
Hence origin is a cusp. 

The form of the curve is as shown in the figure. 
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The curve is called semi cubical parabola. 

 

Example 28 

Trace the conic ¼ = 2
 cos L (circle) 
Solution 

The curve is symmetric about the initial line. 

When, L = m
� , ¼ = 0. Hence the curve passes through the pole and 

further L = m
� is the tangent at the pole. 

 We can prove = L + m
�  . When L = 0 we have ¼ = 2
  and = m

�  . 
Hence at (2
, 0) the tangent is perpendicular to the initial line. 
 Since |cos L| ≤ 1 we have ¼ ≤ 2
. Hence the whole portion of the 
curve lies within the circle ¼ = 2
. 
 Some points on the curve are given in the table. L 0 �/4 �/2 ¼ 2
 √2 
 0 
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The form of the curve is as shown in the figure.    

 

Example 29 

Trace the curve ¼ = 
(1 + cos L) where 
 > 0 (cardioid). 
Solution 

We note the following from the equation of the given curve. 

The curve is symmetric about the initial line. 

When L = � we have ¼ = 0. Hence the curve passes through the 
pole and further L = � is the tangent at the pole. 

Let Ñ be the angle made by the tangent at (¼, L) with the initial 
line. 

Now, tan Ñ = ¼ tI
tÂ = &(��opO I)

�& OPQ I = − cot 3I
�4 = tan 3m

� + I
�4. 

∴ L = m
� + I

� . Hence when L = 0, Ñ = m
� and ¼ = 2
. 

Thus the tangent at (2
, 0) is perpendicular to the initial line. 
Since the maximum value of ¼ is 2
, no portion of the curve lies to 

the right of the tangent at (2
, 0) and hence the curve lies within the 
circle ¼ = 2
. 

The following table gives a set of points lying on the curve. L 0 �/4 �/2 � −�/2 −�/4 ¼ 2
 
 �1 + 1
√2� 
 0 
 
 �1 + 1

√2� 
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When L increases from 0 to 2�, ¼ is positive and it decreases from 2
 to 0. 
The form of the curve is as shown in the figure and it is a cardioid.  

 

3.6 Taylor’s series expansion 

 Suppose that a function �(	) has derivatives of all orders in some 

neighbourhood of the point 
 . Then �(	)  has the following Taylor’s 
development with Lagrange’s form of remainder ℎ. 
�(
 + ℎ) = �(
) + ℎ �x(
) + r�

�! �xx(
) + ⋯ + r¯�8
(W��)! �(W��)(
) +

r¯
W! �(W)(
 + Lℎ) , where 0 < L < 1 . The term vW = r¯

W! �(W)(
 + Lℎ) , is 
called the Remainder after e terms (Lagrange’s form). If limW→R vW = 0, then 
�(	) has Taylor’s series expansion at 
 and is given by   
�(
 + ℎ) = �(
) + ℎ �x(
) + r�

�! �xx(
) + ⋯ + r¯
W! �(W)(
) + ⋯  

 If we put 
 + ℎ = 	, so that ℎ = 	 − 
, then the Taylor’s series 
expansion of �(	) at 
 takes the form 

�(	) = �(
) + (	 − 
) �x(
) + (��&)�
�! �xx(
) + ⋯  

     + (��&)¯
W! �(W)(
) + ⋯  

 (1) 

If we put 
 = 0 in (1), we get 
�(	) = �(0) + 	 �x(0) + ��

�! �xx(0) + ⋯ + �¯
W! �(W)(0) + ⋯  (2) 

and (2) is called the Maclaurin’s series expansion of �(	). 



112 

Differential and integral calculus 

Note The Taylor’s series converges to �(	) if limW→R vW = 0. We now give an 

example of a function � whose Taylor’s series does not converge to �. 
Consider the function � defined by  
�(	) = �S� 8Z�  2� 	 ≠ 00        2� 	 = 0  
Clearly � has derivatives of all orders at every point 	 ≠ 0 and �(W)(	) =
ÔW 3�

�4 S� 8Z�, 	 ≠ 0 where ÔW 3�
�4 is a polynomial in 

�
� . 

We shall now show that for all e, �(W)(0) = 0. 
�x(0)  = limr→�

B(r)�B(�)
r  . 

 = limr→�
�
r �S� 8��� = 0. 

We assume that �(W��)(0) = 0 and prove �(W)(0) = 0. 
�(W)(0) = limr→�

B(¯�8)(r)�B(¯�8)(�)
r  . 

   = limr→�
�
r ÔW�� 3�

r4 S� 8�� = 0. 
Now, Taylor’s series of � around 0 is given by 
�(0) + 	 �x(0) + ��

�! �xx(0) + ⋯ + �¯�8
(W��)! �(W��)(0) + ⋯  

This series has sum zero (by [1]). ∴ The sum of the Taylor’s series of �(	) at any point 	 ≠ 0 is different from �(	). 
 

Taylor’s series expansion of some standard functions 

Result 1 

S� = 1 + �
�! + ��

�! + �[
9! + ⋯  

Proof 

Let �(	) = S�. Then �x(	) = S� . 
Hence �(0) = 1 and �x(0) = 1. 
In general, �(W)(0) = 1 for each e. 
∴ S� = 1 + �

�! + ��
�! + �[

9! + ⋯    

The above formula is valid for all 	 ∈ �. 
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Result 2 

sin 	 = 	 − �[
9! + ��

`! − ⋯  

Proof 

Let �(	) = sin 	 . Then �x(	) = cos 	 , �xx(	) = − sin 	 , �(9)(	) =− cos 	 , … … … 

In general �(W)(	) = f(−1)�̄  sin 	       2� e 2¿ S|Se
(−1)(¯�8)� cos 	   2� e 2¿ ¾��   

∴ �(W)(0) = �0                 2� e 2¿ S|Se
(−1)(¯�8)�   2� e 2¿ ¾��   

∴ sin 	 = 	 − �[
9! + ��

`! − ⋯  

The above formula is valid for all 	 ∈ �. 
 

Result 3 

log(1 + 	) = 	 − ��
� + �[

9 − ⋯  where −1 < 	 < 1. 
Proof 

Let �(	) = log(1 + 	)                      ∴ �(0) = 0. 
�x(	) = �

���                                         ∴ �x(0) = 1. 
�xx(	) = − �

(���)�                               ∴ �xx(0) = −1. 
�(9)(	) = (��)� �!

(���)[                               ∴ �(9)(0) = (−1)� 2!. 
……………….         ………………………. 

�(W)(	) = (��)¯�8(W��)!
(���)¯                    ∴ �(W)(0) = (−1)W��(e − 1)!. 

∴ log(1 + 	) = 	 − ��
� + �[

9 − ⋯  

This formula is valid for |	| < 1. 
 

Example 30 

Using Maclaurin’s theorem expand S� sec 	 as a power of 	 upto the term 

containing 	9. 
Solution 

Let �(	) = S� sec 	. ∴ �(0) = 1.       

 (1) 
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�x(	) = S� sec 	 (1 + tan 	). ∴ �x(0) = 1.       

 (2) �x(	)   = S�@sec9 	 + (1 + tan 	)� sec 	A. 
 = S� sec 	 (2 sec� 	 + 2 tan 	). ∴ �xx(0) = 2.       

 (3) �(9)(	) = 2 S�(3 sec9 	 tan 	 + 2 sec9 	 + sec 	 tan 	 + tan� 	 sec 	. �(9)(0) = 4.       

 (4) 

By Maclaurin’s Theorem, 

S� sec 	 = 1 + 	 + ��
�! (2) + �[

9! (4) + ⋯  

   = 1 + 	 + 	� + �
9 	9 + ⋯  

 

Example 31 

Expand log sin 	 in powers of (	 − 3). 
Solution 

Let �(	) = log sin 	 
Now �(	) = log sin 	   �(3) = log sin 3. 
�x(	) = opO �

OPQ � = cot 	   �x(3) = cot 3. 
�xx(	) = − cosec� 	   �xx(3) = − cosec� 3. �xxx(	) = −2 cosec 	 (− cosec 	 cot 	)    = 2 cosec� 	 cot 	    �xxx(3) = 2 cosec� 3 cot 3. 
∴ log sin 	 = log sin 3 + (	 − 3) cot 3 − (��9)�

� cosec� 3 +  

     
(��9)[

9 cosec� 3 cot 3 + ⋯  

 

Example 32 

Expand S� in ascending powers of (	 − 1). 
Solution 

Let �(	) = S�    �(1) = S �x(	) = S�     �x(1) = S �xx(	) = S�     �xx(1) = S 
………………   ……………. 
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∴ S� = S ^1 + (	 − 1) + (���)�
�! + (���)[

9! + ⋯ _. 
 

Example 33 

Use Taylor’s Theorem to express the polynomial 2	9 + 7	� + 	 − 6 in 
powers of (	 − 2). 
Solution 

Let �(	) = 2	9 + 7	� + 	 − 6 
Now �(	) = 2	9 + 7	� + 	 − 6         �(2) = 16 + 28 + 2 − 6 = 40  �x(	) = 6	� + 14	 + 1                      �x(2) = 24 + 28 + 1 = 53 �xx(	) = 12	 + 14                             �xx(2) = 24 + 14 = 38 �xxx(	) = 12                                       �xxx(2) = 12 ∴ 2	9 + 7	� + 	 − 6 = 40 + 53(	 − 2) + 19(	 − 2)� + 2(	 − 2)9. 
 

Example 34 

Find the expansion of log ����
��� . 

Solution 

log ����
��� = �

� @log(1 + 	) − log(1 − 	)A. 
    = �

� ^3	 − ��
� + �[

9 − ��
5 + ⋯ 4 − 3−	 − ��

� − �[
9 − ��

5 − ⋯ 4_. 
    = �

� ^2 3	 + �[
9 + ��

` + ⋯ 4_. 
   = 	 + �[

9 + ��
` + ⋯   

Exercise 7 

Prove the following 

1. cos 	 = 1 − ��
�! + ��

5! − ⋯ for all 	 ∈ �. 
2. log(
 + 	) = log 
 + �

& − �
�

��
&� + ⋯  if |	| < 
. 

3. sin� 	 = 	� − �[��
5! + ���é

a! − ⋯ for all 	 ∈ �. 
4. Prove that 2 + 	� − 3	` + 7	a = 7 + 29(	 − 1) + 76(	 − 1)� +110(	 − 1)9 + 90(	 − 1)5 + 39(	 − 1)` + 7(	 − 1)a. 
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UNIT-IV 

 

EVALUATION OF INTEGRALS 

4.0 Introduction 

 Let �: � → �  be a continuous function. A function �: � → � is 
called a primitive of �(	) if �x(	) = �(	) for all 	 ∈ �. 
 We note that if �(	) is a primitive for �(	) then �(	) + ~ where 
any arbitrary constant is also a primitive for �(	). 
 Now, let �x(	) = �(	)  and let �(	)  be continuous. Then by 
theorems � �(	)�	�& = �(	) − �(
)    

 (1) 

and 
t

t� \� �(	)�	�& ] = �x(	) = �(	)    

 (2) 

 Equations (1) and (2) show that the process of integration and 

differentiation are inverse to each other for functions with continuous 

derivative. Also from (1), we see that the evaluation of the integral � �(	)�	�&  requires acknowledge of a primitive of �(	). 
 If �(	)  is a primitive of �(	)  we write � �(	)�	 = �(	)  and � �(	)�	 is called an indefinite integral. 
 Thus evaluation of this indefinite integral is just determining a 

primitive of �(	) when it exists. 
 In this chapter we develop various methods of evaluating 

indefinite integrals of various types of functions. 

 

4.1 Some simple integrals 

 Consider � 	� �	. 
 We note that 

t
t� 3�[

9 + ~4 = 	� where ~ is any arbitrary constant. 
 ∴ �[

9 + ~ is a primitive of 	�.     
 ∴ � 	� �	 = �[

9 + ~. 
Note Hereafter in evaluating indefinite integrals we shall take the constant ~ to be understood after the primitive. 

 We give below a list of standard integrals which are immediate 

consequence of the corresponding formulae for differentiation. 

1. �* �	 = *	. 
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2. � 	W �	 = �¯�8
W��  when e ≠ −1. 

3. � 3�
�4  �	 = log 	. 

4. � S�  �	 = S�. 
5. �
�  �	 = &Z

Xp� & . 
6. � sin 	  �	 = − cos 	. 
7. � cos 	  �	 = sin 	. 
8. � sec� 	  �	 = tan 	. 
9. � cosec� 	  �	 = − cot 	. 
10. � sec 	 tan 	  �	 = sec 	. 
11. � cosec 	 cot 	  �	 = − cosec 	. 
12. � t�

�(����) = sin�� 	. 
13. � t�

���� = tan�� 	. 
14. � t�

��(����) = sec�� 	. 
15. � sinh 	  �	 = cosh 	. 
16. � cosh 	  �	 = sinh 	. 
17. � t�

�(����) = sinh�� 	 = log ^	 + �(	� + 1)_. 
18. � t�

�(����) = cosh�� 	 = log ^	 + �(	� − 1)_. 
Note    (i) � 
 �(	)�	 = 
 � �(	)�	 where 
 ∈ �. 
 (ii) �@�(	) ± ?(	)A �	 = � �(	)�	 ± �?(	)�	.        
 

Example 1 

Evaluate q = � µS� + 8 cos 	 − 5
�(����) + 8	�¶  �	. 

Solution 

q = � S� �	 + 8� cos 	  �	 − 4� t�
�(����) + 8� 	� �	. 

= S� + 8 sin 	 − 4 sin�� 	 + �
9 	9. 

 

Example 2 

Evaluate = � t�
��OPQ � . 
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Solution 

q = � 3��OPQ �
opO� � 4 �	. 

   = �(sec� 	 − sec 	 tan 	)�	. 
   = tan 	 − sec 	. 
 

Exercise 1 

Evaluate the following integrals 

1. 
	` + d√	 + ~ sin 	 + * S� .   2. 
\���5�](9�5�)

�[         

3. 
�

��opO �          4. 
opO� �

��OPQ �     5. S� − 9
� + 5

���� .    
Answers 

1. 
�
a 
	a + �g

9 	9/� − ~ cos 	 + *S�         2. −13 log 	 − 4	 − 12	�� 
3. – (cot 	 + cosec 	)          4. 	 − cos 	   
5. S� − log 	9 + 4 tan�� 	 
 

4.2 Method of Substitution 

 A standard method of evaluating a given integral is to reduce it to 

a standard formula listed in 4.1 by a simple substitution. In many cases the 

form of the function helps us to find or guess a suitable substitution. 

However in general, finding a suitable substitution for evaluating an 

integral need experience and practice. 

 

Some standard integrals 

1. � ��
�\ Ð��Ð] = !"#�$(�/ )  

Proof 

Put 	 = 
 sin L. Hence �	 = 
 cos L �L. 
∴ � t�

�(&����) = � & opO ItI
& opO I = ��L = L. 

         = sin��(	/
). 
 

2. � �� Ð��Ð = $ %&#�$(�/ )  
Proof 

Put 	 = 
 tan L. Hence �	 = 
 sec� L �L. 
∴ � t�

&���� = � & O·o� ItI
&� O·o� I = �

& ��L = �
& L. 
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     = �
& tan��(	/
). 

3. � ��
�\ Ð��Ð] = !"#'�$(�/ )  

Proof 

Put 	 = 
 sinh L. Hence �	 = 
 cosh L �L. 
∴ � t�

�(&����) = � & opO� ItI
& opO� I = ��L = L. 

          = sinh��(	/
). 
 

4. � ��
�\�Ð� Ð] = ()!'�$(�/ )  

Proof 

Put 	 = 
 cosh L. Hence �	 = 
 sinh L �L. 
∴ � t�

�(���&�) = � & OPQ� ItI
& OPQ� I = ��L = L. 

      = cosh��(	/
). 
 

5. � ���Ð� Ð = $
Ð *)+ 3�� �� 4 

Proof 

Let 
�

���&� = 	
��& + 


��& . 
Then � = �

�& and = − �
�& . ∴ � t�

���&� = �
�& � t�

��& − �
�&� t�

��&  
     = �

�& log 3��&
��&4. 

 

6. � �� Ð��Ð = $
Ð *)+ 3 �� ��4 

Proof 

Let 
�

&���� = 	
&�� + 


&�� . 
Then � = �

�& and = �
�& . ∴ � t�

&���� = �
�& � t�

&�� + �
�&� t�

&��  
     = �

�& log 3&��
&��4.   

 

7. ��( Ð − �Ð) �� = $
Ð��( Ð − �Ð) + $

Ð Ð !"#�$(�/ ) 
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Proof 

Put 	 = 
 sin L. Hence �	 = 
 cos L  �L. 
∴ ��(
� − 	�) �	 = 
� � cos� L  �L. 
  = �

� 
� �(1 + cos 2L)�L. 
  = �

� 
� ^L + �
� sin 2L_. 

  = �
� 
�@L + sin L cos LA  

  = �
� 
� sin��(	/
) + �

� 
�(	/
)�@1 − (	/
)�A  
  = �

� 	�(
� − 	�) + �
� 
� sin��(	/
). 

 

8. ��( Ð + �Ð) �� = $
Ð��( Ð + �Ð) + $

Ð Ð !"#'�$(�/ ) 
Proof 

Put 	 = 
 sinh L. Hence �	 = 
 cosh L  �L. 
∴ ��(
� + 	�) �	 = 
� � cosh� L  �L. 
           = �

� 
� �(1 + cosh 2L)�L. 
           = �

� 
� ^L + �
� sinh 2L_. 

           = �
� 
�@L + sinh L cosh LA  

           = �
� 	�(
� + 	�) + �

� 
� sinh��(	/
). 
 

9. ��(�Ð −  Ð) �� = $
Ð��(�Ð −  Ð) − $

Ð Ð ()!'�$(�/ ) 
Proof 

Put 	 = 
 cosh L. Hence �	 = 
 sinh L  �L. 
∴ ��(	� − 
�) �	 = 
� � sinh� L  �L. 
          = �

� 
� �(cosh 2L − 1)�L. 
          = �

� 
� ^�
� sinh 2L − L_. 

          = �
� 	�(	� − 
�) − �

� 
� cosh��(	/
). 
 

10. � %&#�  �� = *)+(!,( �) 
Proof � tan 	  �	 = � OPQ �

opO �  �	  
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        = −� t(opO �)
opO � = − log(cos 	)  

        = log(sec 	). 
 

11. � ()% �  �� = *)+(!"# �)   
 Proof is similar to the previous problem. 

 

12. � !,( �  �� = *)+(!,( � + %&#�) 
Proof � sec 	  �	 = � O·o �(O·o ��TUQ �)

O·o ��TUQ � �	  
       = � t(O·o ��TUQ �)

O·o ��TUQ �   

       = log(sec 	 + tan 	). 
 

13. � ()!,( �  �� = − *)+(()!,( � + ()% �) 
Proof is similar to the previous problem.  

 

Example 3 

Evaluate � OPQ √�
√�  �	 

Solution 

Put u = √	 
�u = t�

�√�  
Hence � OPQ √�

√�  �	 = 2� sin u  �u 
        = −2 cos u = −2 cos √	. 
 

Example 4 

Evaluate � 	 S�� �	. 
Solution � 	 S�� �	 = �

�� S�� �(	�). 
       = �

� S��
. 

 

Example 5 

Evaluate � � t�
���� 
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Solution 

Put u = 	�. Hence �u = 2	 �	. 
∴ � � t�

���� = �
�� tb

��b�  
    = �

� tan�� u  
    = �

� tan��(	�). 
 

Example 6 

Evaluate � 
��  	 �	. 
Solution � 
��  	 �	 = �

�� 
£ �¢ (putting 	� = ¢) 
       = �

�� S£ Xp� &�¢ = �¥ -ì.°
� Xp� &   

       = &Z�
� Xp� & . 

 

Example 7 

Prove that � t�
�Z��

�� = log 3 ��
���4 

Solution � t�
�Z��

�� = � ��Z
����Z  �	��   

 = − � t(��Z)
����Z  �	��   

 = −@log(1 + S��)A�� = log 2 − log(1 + 1/S)  
 = log 3 ��

���4. 
 

Exercise 2 

Integrate the following functions with respect to 	. 
1. 	� cos(	9)  2. 

�
� Xp� �  3. 

(Xp� �)[
�  

4. 
�

����   5. 
�

(`���9)��  6. 
OPQ�8 �

�(����) 
7. 

opO �
�(��OPQ� �)  8. 

���
������9   9. 

�Z
�(����Z) 

10. 
�

�(:��` ��)  11. 
�

5:����a  12. √25 + 	� 
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Answers 

1. 
�
9 sin(	9)  2. log(log 	)  3. 

�
5 (log 	)5 

4. 
�
� log(1 + 	�) 5. �

�� (5	� − 3)� 6. �� (sin�� 	)� 
7. sinh��(sin 	) or log²sin 	 + √1 + sin� 	³  
8. 

�
� log(	� + 2	 + 3)  9. sin��(S�)   

10. 
�
` sinh��(5	/3)  11.

�
�� tan��(7	/4)  

12. 
�
� 	 √25 + 	� + �`

� sinh��(	/5). 
 

4.3 Integration of Rational functions 

 In this section we discuss various methods of evaluation ��(	)�	 
where �(	) denotes the ratio of two polynomials in 	. 
Type 1 � �� �Ð�/��0  
We note that 
	� + d	 + ~ = 
 3	� + g

& 	 + �
&4 

  = 
 µ3	 + g
�&4� + 3�

& − g�
5&�4¶  

  = 
 µ3	 + g
�&4� + Î�¶  where Î� = ± 5&��g�

5&�  

∴  The given integral reduces to �
& � tc

c�±Ó�  where { = 	 + g
�&   and this 

integral can be easily evaluated. 

Type 2 � 1��2 �Ð�/��0  ��  
Let 	 + > = �(2
	 + d) + � 
Equating like terms we get � = �

�& and � = 3> − Cg
�&4 

∴  The given integral reduces to C
�& � t\&���g���]

&���g��� + 3> − Cg
�&4� t�

&���g��� 
which can be evaluated by using type 1. 

Note  

1. A rational function �(	) is called a proper rational function if 
the degree of the numerator is smaller than the degree of the 

denominator. In some cases a proper rational function �(	)  can be 
resolved into partial fractions and ��(	)�	 can be evaluated using types 
1 or 2. 
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2. If �(	)  is not a proper rational function then �(	)  can be 
expressed as a sum of a polynomial and a proper rational function by 

ordinary division. 

We illustrate these methods in the following problems. 

 

Example 8 

Evaluate � t�
���a��` 

Solution � t�
���a��` = � t�

(��9)����  
      = �

5 log 3��9��
��9��4  

      = �
5 log 3��`

���4. 
 

Example 9 

Evaluate � t�
9������� 

Solution � t�
9������� = �

9� t�
����[���[

  

        = �
9� t�

3��8[4���[�8À
  

        = �
9� t�

3��8[4��\�`/9]�  

        = 9
9√` tan�� ª ��8[√`/9«  

        = �
√` tan�� 39���

√` 4. 
 

Example 10 

Evaluate � ����
`������  �	 

Solution 

Let 2	 − 1 = �(10	 − 1) + � 
Equating the coefficients of x and constant terms we get � = �

` and � =
− 5

` ∴ � ����
`������  �	 = �

`� �����
`������  �	 − 5

`� t�
`������   
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  = �
` log(5	� − 	 + 2) − 5

�`� t�
���8�����  

  = �
` log(5	� − 	 + 2) − 5

�`� t�
3�� 8834��\�9:/��]�  

  = �
` log(5	� − 	 + 2) − 5×��

�`×√9: tan�� ª �� 883�(9:/��)«  
  = �

` log(5	� − 	 + 2) − �
`√9: tan�� 3�����

√9: 4  
 

 

 

Example 11 

Evaluate q = � �
(��&)(��g)  �	 

Solution 

Let 
�

(��&)(��g)  �	 = 	
��& + 


��g . 
We get � = &

&�g and � = g
g�& ∴ q = &

&�g � t�
��& − g

g�&� t�
��g  

      = �
&�g @
 log(	 − 
) − d log(	 − d)A  

      = �
&�g log ^(��&)°

(��g)ü_. 
 

Example 12 

Evaluate � ���
�8��5  �	  

 

Solution 

���
�8��5 = 	�9 − 5�8[

�8��5  
∴ � ���

�8��5  �	 = � 	�9 �	 − 4� �8[
�8��5  �	  

           = �8�
�5 − 5

�5 log(	�5 + 4)  
           = �8�

�5 − �
½ log(	�5 + 4). 

 

Exercise 3 

Integrate the following functions with respect to 	. 
1. 

�
���5����  2. 

����
�������9  3. 

�
(���)(���) 
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4. 
���

�[�5���5�  5. 
�

(����)(���)  6. 
�

�[�� 
7. 

����
(����)(����)  8. 

��
�[��    

9. show that � t�
���[�� = �

9 log 2 + m
9√9. 

Answers 

1. 
�

√a tan�� 3���
√a 4 2. log(	� + 21	 + 3) − ��

√5�: log 3������√5�:
������√5�:4  

3. log 3���
���4    4. 

9
��� + log (���)�

��   

5. – log(1 − 	) + �
� log(	� + 1) + tan�� 	 

6. 
�
a log(	� − 	 + 1) − �

9 log(	 + 1) + �
√9 tan�� 3����

√9 4 
7. 

�
9 log(	 − 1) + log(	 + 1) − `

a log(2	 + 1) 
8. 

�
9 @	9 + log(	9 − 1)A 

 

4.4 Integration of Irrational functions 

Type 1  � ��
� �Ð�/��0 

 As in type 1 of 4.3 the integral can be reduced to one of the forms � tc
�c��Ó� or � tc

�c��Ó� or � tc
�Ó��c� which are simple integrals. 

Type 2 � 1��2
� �Ð�/��0  �� 

 As in type 2 of 4.3 the given integral becomes 
C

�&� t\&���g���]
&���g��� +

3> − Cg
�&4� t�

&���g��� which can be evaluated using type 1. 
Type 3 �√ �Ð + /� + 0 �� 
 This integral can be reduced to one of the forms �√{� − Î� �{ or �√Î� − {� �{  or �√{� + Î� �{  which can be evaluated by a suitable 
substitution. 

 Type 4 �(	 + >)√
	� + d	 + ~ �	 
Let 	 + > = �(2
	 + d) + �. 
∴ � = �

�& and � = 3> − Cg
�&4. 

Hence the given integral reduces to 
�

�& �√
	� + d	 + ~ �(
	� + d	 +
~) + 3> − Cg

�&4�√
	� + d	 + ~ �	 which can be evaluated. 
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Type 5 � ��
(���)� �Ð�/��0 

 This can be reduced to the form � t�
�	���
��ó by the substitution −* = �

£  . 
Type 6 � ��

\ö�Ð�4]� �Ð�/��0 
 This can be reduced to one of the types discussed earlier by the 

substitution = �
£  . 

Type 7 ��(� −  )(/ − �) �� ;  � ��
�(�� )(/��) ;  ��3�� /��4  ��  can be 

evaluated by using the substitution 	 = 
 sin� L + d cos� L. 
 We illustrate theses methods in the following problems. 

 

Example 13 

Evaluate � t�
���9����� . 

Solution � t�
���9����� = � t�

���3���[����4  

         = �
√�� t�

5�µ3��[�4��3��4�¶
  

         = �
√�� t�

5µ3��4��3��[�4�¶
  

         = �
√� sin�� ª��[�`/5«  

        = �
√� sin�� 35��9

` 4. 
 

Example 14 

Evaluate ��39���
��� 4 �	 

Solution 

��39���
��� 4 �	 = � 9���

�(���)(9���)  �	  
            = � 9���

�(9�`�����)  �	  
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Let 3 − 2	 = �(4	 − 5) + � 
Equating the like terms we get � = − �

� and � = �
� ∴ � 9���

�����`��9  �	 = − �
�� (5��`)

�����`��9  �	 + �
�� t�

�����`��9   
       = −√2	� − 5	 + 3 + �

�√�� t�
5µ3����4��38�4�¶

   
       = −√2	� − 5	 + 3 + �

�√� cosh��(4	 − 5).  
 

Example 15 

Evaluate � �3���
���4  �	��    

Solution 

q = � �3���
���4  �	�� = � ���

�(���)(���) �	��   

   = � ���
�5��� �	��   

   = � � t�
�5���

�� + � � t�
�5���

��   

   = ^2 sin�� 3�
�4_�

� − ^�(4 − 	�)_�
�
  

   = � + 2. 
 

Example 16 

Evaluate �(3	 + 2) √	� + 	 + 1 �	 
Solution 

Let (3	 + 2)   = � t
t� (	� + 	 + 1) + � 

  = �(2	 + 1) + �. 
Comparing like terms we get � = 9

� and = �
� . �(3	 + 2) √	� + 	 + 1 �	 = � ^9

� (2	 + 1) + �
�_ √	� + 	 + 1 �	  

  = 9
��(2	 + 1) √	� + 	 + 1 �	 + �

��√	� + 	 + 1 �	  
  = 9

�
\������][/�

9/� + �
��5µ3	 + �

�4� + 3√9
� 4�¶ �	  

= (	� + 	 + 1)9/� + �
5 ý3	 + �

�4 √	� + 	 + 1 + 9
5 sinh�� ª ��8�√[�

«þ  



129 

Differential and integral calculus 

= (	� + 	 + 1)9/� + �
5 ^3����

� 4 √	� + 	 + 1 + 9
5 sinh�� 3����

√9 4_  
 

Example 17 

Evaluate q = � t�
(����)����� 

Solution 

Put = �
£ . Hence �	 = − �

£�  �¢. 
Now, q = � t�

(����)����� = −� t£/£�
(�/£���)�(�/£���). 

 = − � £ t£
(��£�)���£� . 

Now put 1 + ¢� = u�. Hence ¢ �¢ = u �u. 
Hence q = −� b tb

(��b�)b  
   = � tb

b��\√�]�  

   = �
�√� log 3b�√�

b�√�4  
  = �

�√� log µ���£��√�
���£��√�¶  

  = �
�√� log µ�(����)�√��

�(����)�√��¶. 
 

Exercise 4 

Integrate the following with respect to 	. 
1. 

�
�(`�½��9��)  2. 

�&��g
�(&���g���)   3. 

��9
�(9�5��5��) 

4. �3 ���
���94  5. �(3	� + 4	 + 1) 

 6.
�

(����)�(������)   
7. 

�
(����9)�(9���5)    8. 

�
���(5���) 

9. Evaluate � (9��½)t�
�������

�/��  

Answers 

1. 
�

√9 sin�� 3a��½
√��:4   2. 2√
	� + d	 + ~  

3. − �
5 √3 + 4	 − 4	� + ½

5 sin�� 3����
� 4  

4. 
�
� √2	� + 	 − 3 − `

5√� cosh�� 35���
` 4   
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5. 39���
a 4 √3	� + 4	 + 1 + √9

�� cosh��(3	 + 2)   

6. − �
√� tan�� ������

√�� �  7. 
�

�√`� log µ√�½��√9�9���5
√�½��√9�9���5¶   

8. − �5���
5�    9. 

9
� + ��

� ^sin�� 3 �
√`4 − sin�� 3 �

√`4_ 
 

 

4.5 Integration of Trigonometric Functions 

 In general an integral of the form ��(sin 	 , cos 	)�	  can be 
evaluated by putting ¢ = tan(	/2) so that sin 	 = �£

��£� ; cos 	 = ��£�
��£� and 

= � t£
��£� . 

 However there are some special methods if the functions 

involved are simple. 

For example � & OPQ ��g opO �
C OPQ ��E opO �  �	  can be evaluated by putting 
 sin 	 +

d cos 	 = � t
t� ( sin 	 + > cos 	) + �( sin 	 + > cos 	). 

These methods are illustrated in the following problems. 

 

Example 18 

Evaluate q = � � OPQ ��opO �
9 OPQ ��opO �  �	 

Solution 

Let 2 sin 	 + cos 	 = � t
t� (3 sin 	 + cos 	) + �(3 sin 	 + cos 	) 

 = �(3 cos 	 − sin 	) + �(3 sin 	 + cos 	) 
Equating like terms we get 3� + � = 1 and – � + 3� = 2 
Solving we get � = �

�� and � = ½
�� ∴ q = �

��� 9 opO ��OPQ �
9 OPQ ��opO �  �	 + ½

����	  
      = �

�� log(3 sin 	 + cos 	) + ½
�� 	  

 

Example 19 

Show that � t�
9 opO �� 5 OPQ �

m/�� = �
` log 6 

Solution 

Put ¢ = tan(	/2) 
�¢ = �

� sec�(	/2) �	  
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∴ �	 = � t£
��£�  � t�

9 opO �� 5 OPQ �
m/�� = � � t£

(��£�)µ9�8�¥�
8�¥���53 �¥8�¥�4¶

��   

       = 2� t£
9�9£���£

��   

       = �
9� t£

3�[4��3£��[4���   

       = ý3�
94 × 3�

�4 × 39
`4 log ª�[�£��[�[�£��[

«þ
�
�
  

       = ý�
` log £�8[9�£þ

�
�
  

        = �
` ^log �

9 − log �
:_   

        = �
` log 6.  

 

Example 20 

Evaluate q = � t�
��&� opO� ��g� OPQ� � 

Solution 

q = � t�
��&� opO� ��g� OPQ� � . 

   = � O·o� �t�
O·o� ��&��g� TUQ� � . 

Put ¢ = tan 	. Hence �¢ = sec� 	 �	. 
∴ q = � t�

(��£�)�&��g�£�  
      = � t£

(��g�)£��&��� . 
     = �

��g� � t£
£��ª��°��8ü��8�«� . 

    = �
��g� ý�3g���

&���4 tan�� ª�3g���
&���4« ¢þ. 

 

Exercise 5 

Integrate the following 

1. 
½ OPQ �

` opO ��� OPQ �  2. 
` opO �

� opO ��OPQ �  3. 
�

��9 OPQ � 
4. 

OPQ �
`�5 OPQ �  5. 

opO �
`�9 opO �  6. 

�
��9 opO� � 
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7. 
�

9 opO� ���� OPQ� � 8. Show that � t�
� opO� ���

9m/5m/5 = �
9√9 

Answers 

1. 
�5
�a 	 − 9`

�a log(5 cos 	 + 2 sin 	) 2. 2	 + log(2 cos 	 + sin 	) 
3. 

�
�√� log 3TUQ(�/�)�9��√�

TUQ(�/�)�9��√�4 4. �5 	 − `
a tan�� ^�

9 35 tan 3�
�4 + 44_ 

5. 
`
a tan�� ^2 tan 3�

�4_ − �
9 	 6. �� tan�� ^�

� tan 	_ 
7. 

�
�√99 log ��(9/��)�TUQ �

�(9/��)�TUQ �� 
 

4.6 Evaluation of Definite Integrals 

 1. � �(	)�	g& = −� �(	)�	&g  

 2. � �(	)�	g& = � �(	)�	�& + � �(	)�	g�  

We now prove some more properties of definite integrals. 

 

3. � �(�)�� � = �Ð� �(�)�� �   6� �(�)67 898¸�                     6� �(�) 67 :��   

Proof � �(	)�	&�& = � �(	)�	��& + � �(	)�	&�    (by 2) 

= − � �(−u)�u�& + � �(	)�	&�   (by putting 	 = −u) 
= � �(−u)�u&� + � �(	)�	&�       

 (1) 

Case (i) Let �(	) be an even function ∴ �(	) = �(−	)   
From (1) we get � �(	)�	&�& = � �(u)�u&� + � �(	)�	&�  

= 2� �(	)�	&� . 

Case (ii) Let �(	) be an odd function ∴ �(	) = −�(−	)   
From (1) we get � �(	)�	&�& = −� �(u)�u&� + � �(	)�	&� = 0. 
 

4. � �(�)�� �  = � �( − �)�� �  

Proof 

Putting 
 − 	 = u in the right hand side integral we get the required 
result. 
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5. � �(�)��Ð � = �Ð� �(�)�� �   6� �(Ð − �) = �(�)
�                     6� �(Ð − �) = −�(�)  

Proof � �(	)�	�&� = � �(	)�	&� + � �(	)�	�&�  (by 2) 

         = � �(	)�	&� − � �(2
 − u)�u�&     (putting u = 2
 − 	) 
         = � �(	)�	&� + � �(2
 − 	)�	�&     (1) 

Case (i) Let �(2
 − 	) = �(	). 
Hence from (1) we get � �(	)�	�&� = � �(	)�	&� + � �(	)�	&�    

             = 2� �(	)�	&� . 

Case (ii) Let �(2
 − 	) = −�(	). 
Again from (1) we get � �(	)�	�&� = � �(	)�	&� − � �(	)�	&� = 0. 
 

Example 21 

Evaluate q = � � OPQ �
��opO� �  �	m�  

Solution 

q = � � OPQ �
��opO� �  �	m�       

 (1) 

Also q = � (m��) OPQ(m��)
��opO�(m��)  �	m�  

q = � (m��) OPQ �
��opO� �  �	m�       

 (2) 

Adding (1) and (2), 2q = � m OPQ �
��opO� �  �	m�  

Put cos 	 = u. Hence sin 	 �	 = −�u. 
Now, 2q = −� � tb

��b���� = � � tb
��b���� = �@tan�� uA���  

               = �(�/2). 
∴ q = m�

5  . 
 

Example 22 

Evaluate q = � OPQ� �
OPQ ��opO �  �	m/��  
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Solution 

q = � OPQ� �
OPQ ��opO �  �	m/��                         (1) 

Also, q = � OPQ�3;���4;�3OPQ3;���4�opO3;���4  �	 
∴ Adding (1) and (2), 2q = � �

opO ��OPQ �  �	m/��  

Put ¢ = tan(	/2). Hence �¢ = �
� sec�(	/2) �	 

∴ �	 = �t£
��£�  

Now q = � t�
OPQ ��opO �

m/��  

 = � � t£
(��£�)µ �¥8�¥��8�¥�

8�¥�¶
��    

 = 2� t£
��£���£

��   

 = 2� t£
\√�]��(£��)�

��   

 = ^2 3 �
�√�4 log 3√��£��

√��£��4_�
�
  

 = �
√� ^log 1 − log 3√���

√���4_  
 = �

√� log 3√���
√���4  

∴ q = �
�√� log 3√���

√���4  
 

Example 23 

Evaluate q = � log(1 + tan L)  �Lm/5� . 

Solution 

 q = � log(1 + tan L)  �Lm/5� . 

Also, q = � log@1 + tan(�/4 − L)A  �Lm/5� . 

 = � log 31 + ��TUQ I
��TUQ I4  �Lm/5� . 

 = � log 3 �
��TUQ I4  �Lm/5�   

∴ q = � log 2  �Lm/5� − � log(1 + tan L)  �Lm/5�   

      = � log 2  �Lm/5� − q. 
∴ 2q = � log 2  �Lm/5� = log 2 @LA�m/5
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        = m
5 log 2. 

∴ q = m
� log 2. 

 

Exercise 6 

1. Prove that � √OPQ �
√OPQ ��√opO � �	m/�� = m

5  
2. Prove that � 	�(2 − 	) �	�� = �a√�

�`  

3. Prove that � 	 sin9 	 �	m� = �m
9    

4. Prove that � �
&��opO� � �	m� = m�

�&�(&���) 
5. Prove that � �

OPQ ��opO � �	m/�� = m
�√� log\√2 + 1] 

 

4.7 Integration by Parts 

Theorem 1 (Integration by parts) 

Let { and | be differentiable functions of 	. Then �{ �| = {| − � | �{. 
Proof 

We know that 
t

t� ({|) = { t}
t� + | tc

t� . 
Integrating we get {| = �{ t}

t�  �	 + � | tc
t�  �	 

   = �{ �| + � | �{   ∴ �{ �| = {| − � | �{. 
Note The method of evaluating a given integral by using the above 

theorem is called integration by parts. In applying this method we must 

choose { and | carefully so that the resulting integral is simpler than the 

given integral. 

 

Theorem 2 (Bernoulli’s formula) 

Let { and | be differentiable functions 	. Suppose there exists a positive 
integer e such that {(W) = 0 then  �{ �| = {| − {x|� + {xx|� − ⋯ (−1)W{(W)|W                            where |� =� | �	 ; |� = � |��	 ; … 

Proof �{ �| = {| − �| �{      (by theorem 1) 

 = {| − �{x �(|�)  
 = {| − {x|� + �|� �{x  



136 

Differential and integral calculus 

 = {| − {x|� + �{xx�(|�)  
 = {| − {x|� + {xx|� − �|� �{xx  
Proceeding like this we get the required formula. 

 

Example 24 

Prove that �{ t�}
t��  �	 = { t}

t� − | tc
t� + �| t�c

t��  �	 
Solution �{ t�}

t��  �	 = �{ t
t� 3t}

t�4 �	  
       = { t}

t� − � t}
t�  �{   (by integration by parts) 

       = { t}
t� − � t}

t�
tc
t�  �	  

       = { t}
t� − � 3tc

t�4 �|  
       = { t}

t� − ^| tc
t� − � | t�c

t��  �	_  
        = { t}

t� − | tc
t� + �| t�c

t��  �	  
 

Example 25 

Evaluate � 	 S��	 
Solution � 	 S��	 = � 	 �(S�)  
     = 	 S� − � S��	  
     = 	 S� − S�  
     = S�(	 − 1)  
 

Example 26 

Evaluate � � OPQ�8 �
�(����)  �	 

Solution 

We note that � ^−�(1 − 	�)_ = �
�(����) 

∴ � � OPQ�8 �
�(����)  �	 = � sin�� 	  � ^−�(1 − 	�)_  

    = −�(1 − 	�) sin�� 	 + ��	  
    = 	 − �(1 − 	�) sin�� 	  
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Example 27 

Prove that � L sec� L  �Lm/5� = �
5 (� − 2 log 2). 

Solution � L sec� L  �L = � L �(¢
e L)  
  = L tan L − � tan L  �L = L tan L − log sec L  
∴ � L sec� L  �Lm/5� = @L tan L − log sec LA�m/5 

  

           = m
5 − log √2 = m

5 − �
� log 2  

           = �
5 (� − 2 log 2). 

 

Example 28 

Prove that � S&� cos d	  �	 = �°Z(& opO g��g OPQ g�)
&��g�  

Solution 

Let q = � S&� cos d	  �	 
∴ q = � cos d	  � 3�°Z

& 4  
      = �°Z

& cos d	 + g
& � S&� sin d	  �	  

      = �°Z
& cos d	 + g

& ^�°Z
& sin d	 − g

& � S&� cos d	  �	_  
      = �°Z

& cos d	 + g
&� S&� sin d	 − 3g�

&�4 q  
∴ q 31 + g�

&�4 = S&� ^opO g�
& + g

&� sin d	_. 
∴ q = �°Z(& opO g��g OPQ g�)

&��g�   

 

Note Similarly, � S&� sin d	  �	 = �°Z(& opO g��g OPQ g�)
&��g�   

 

Exercise 7 

Integrate the following with respect to 	. 
1. ( 	 + ¡) S&��g  2. 

Xp� �
(���)�  3. tan��\√	] 

4. 	 cos� 	   5. sin�� �3 �
���4 6. �Z(���)

(���)�  
Answers 

1. 
�°Z�ü

&� (
 	 + 
¡ −  )   2. 
�

��� log 	 − log(	 + 1) 
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3. (	 + 1) tan�� √	 − √	  4. 
�
5 	� + �

5 	 sin 2	 + �
� cos 2	 

5. 	 sin�� �3 �
���4 − √	 + tan�� √	  6. 

�Z
��� 

 

4.8 Reduction formulae 

I. Establish a reduction formulae for ��¸8 � �� where ¸ ∈ Ã. 
Proof qW = �	WS&� �	  
qW = �	W � 3�°Z

& 4 = 	W 3�°Z
& 4 − 3W

&4� S&� 	W���	  
     = �¯�°Z

& − 3W
&4 qW��  

The reduction formula for qW is qW = �¯�°Z
& − 3W

&4 qW��. 
The ultimate integral is q� = � S&�  �	 =  �°Z

&  . 

 

2. Reduction formula for <¸ = ��¸ ()!  �  �� where ¸ ∈ Ã. 
Proof 

Let qW  = � 	W cos 
	  �	 
 = � 	W � 3OPQ &�

& 4 = 	W 3OPQ &�
& 4 − 3W

&4� 	W�� sin 
	  �	  
 = 	W 3OPQ &�

& 4 − 3W
&4 ^3− opO &�

& 4 	W�� + W��
& � 	W�� cos 
	  �	_  

 = 3�¯  OPQ &�
& 4 − 3 W

&�4 	W�� cos 
	 − W(W��)
&� qW��  

The ultimate integral depends on e being odd or even. 
Case i. n is odd. Then the ultimate integral reduces to  

q� = �	 cos 
	 �	 = � OPQ &�
& − �

& � sin 
	  �	  
    = � OPQ &�

& + opO &�
&�   

Case ii. n is even. Then the ultimate integral reduces to  

q� = � cos 
	  �	 = OPQ &�
&   

 

3. Reduction formula <¸ = � !"#¸ �  �� . (¸ ∈ Ã) & find � !"#¸ �  ���/Ð�  

Proof 

 qW = � sinW 	  �	 qW = � sinW�� 	 sin 	 �	 = � sinW�� 	  �(− cos 	)  
    = − sinW�� 	 cos 	 + (e − 1)� sinW�� 	 cos� 	 �	  
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    = − sinW�� 	 cos 	 + (e − 1)� sinW�� 	 (1 − sin� 	)�	  
    = − sinW�� 	 cos 	 + (e − 1)� sinW�� 	 �	 − (e − 1)� sinW 	 �	  ∴ qW = − sinW�� 	 cos 	 + (e − 1)qW�� − (e − 1)qW  ∴ e qW = − sinW�� 	 cos 	 + (e − 1)qW��  
The ultimate integral is = �q� = � sin 	  �	     2� e 2¿ ¾��q� = ��	              2� e 2¿ S|Se 
      = 0− cos 	     2� e 2¿ ¾��	              2� e 2¿ S|Se  
Now qW = − OPQ¯�8 � opO �

W + 3W��
W 4 qW�� 

� sinW 	  �	m/�� = ^− OPQ¯�8 � opO �
W _�

m/� + 3W��
W 4� sinW�� 	  �	m/��   

  = 3W��
W 4� sinW�� 	  �	m/��   

  = 3W��
W 4 3W�9

W��4� sinW�5 	  �	m/��   

  = 3W��
W 4 3W�9

W��4 … … …=W   where =W  is the ultimate 

integral which depends upon e being odd or even. 
Case (i) If e is even =� = � �	m/�� = @	A�m/� = �/2. 
Case (ii) If e is odd =� = � sin 	  �	m/�� = @− cos 	A�m/� = 1 
� sinW 	  �	m/�� = >3W��

W 4 3W�9
W��4 … �

� 3m
�4   2� e 2¿ S|Se

3W��
W 4 3W�9

W��4 … �
9 (1)    2� e 2¿ ¾��   

Note Similarly we can establish a reduction formula for � cosW 	  �	 and 
hence evaluate � cosW 	  �	m/��  by means of the formula given below. 

 If qW = � cosW 	  �	 then e qW = cosW�� 	 sin 	 + (e − 1)qW��      

� cosW 	  �	m/�� = >3W��
W 4 3W�9

W��4 … �
� 3m

�4   2� e 2¿ S|Se
3W��

W 4 3W�9
W��4 … �

9 (1)    2� e 2¿ ¾��   
 

4. Establish a reduction formula for <¸ = � %&#¸ �  �� 
Proof qW = � tanW 	  �	  
    = � tanW�� 	 tan� 	  �	  
    = � tanW�� 	 (sec� 	 − 1) �	  
    = � tanW�� 	 sec� 	  �	 − � tanW�� 	 �	  
    = � tanW�� 	 �(tan 	) − qW��  
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∴ qW = TUQ¯�8 �
W�� − qW��  

The ultimate integral is given by q� = ��	 = 	  2� e 2¿ S|Se. q� = � tan 	  �	 = log sec 	   2� e 2¿ ¾��. 
 

5. Establish a reduction formula for <¸ = � ()%¸ �  �� 
Proof qW = � cotW�� 	 cot� 	  �	  
    = � cotW�� 	 (cosec� 	 − 1) �	  
    = −� cotW�� 	  �(cot 	) − � cotW�� 	  �	  
∴ qW = − opT¯�8 �

W�� − qW��  
The ultimate integral is given by q� = ��	 = 	  2� e 2¿ S|Se. q� = � cot 	  �	 = log sin 	   2� e 2¿ ¾��. 
 

6. Establish a reduction formula for <¸ = � !,(¸ �  �� 
Proof qW = � secW 	  �	  
    = � secW�� 	  �(tan 	)  
    = secW�� 	 tan 	 − (e − 2)� secW�� 	 tan� 	  �	  
    = secW�� 	 tan 	 − (e − 2)� secW�� 	 (sec� 	 − 1) �	  
    = secW�� 	 tan 	 − (e − 2)@qW − qW��A.  ∴ (e − 1)qW = secW�� 	 tan 	 + (e − 2)qW��  
The ultimate integral is given by q� = ��	 = 	  2� e 2¿ S|Se. q� = � sec 	  �	 = log(sec 	 + tan 	)   2� e 2¿ ¾��. 
 

7. Establish a reduction formula for <¸ = � ()!,(¸ �  �� 
Proof qW = � cosecW 	  �	  
     = −� cosecW�� 	  �(cot 	)  
     = − cosecW�� 	 cot 	 − (e − 2)� cosecW�� 	 (cosec� 	 − 1) �	  qW = − cosecW�� 	 cot 	 − (e − 2)@qW − qW��A. ∴ (e − 1)qW = − − cosecW�� 	 cot 	 − (e − 2)qW��  
The ultimate integral is given by 
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q� = ��	 = 	  2� e 2¿ S|Se. q� = � cosec 	  �	 = − log(cosec 	 + cot 	)   2� e 2¿ ¾��. 
 

8. Establish a reduction formula for <2,¸ = � !"#2 � ()!¸ �  �� where 2, ¸ ≥ $. 
Proof qE,W = � cosW�� 	 (sinE 	 cos 	  �	)  
       = �(cos 	)W��� 3(OPQ �)��8

E�� 4  
       = opO¯�8 � OPQ��8 �

E�� + W��
E��� sinE�� 	 cosW�� 	  �	  

       = opO¯�8 � OPQ��8 �
E�� + W��

E��� sinE 	 cosW�� 	 (1 − cos� 	) �	  
       = opO¯�8 � OPQ��8 �

E�� + W��
E�� ²qE,W�� − qE,W³  

∴ ^1 − W��
E��_ qE,W = opO¯�8 � OPQ��8 �

E�� + 3 W��
E��4 qE,W��. (> + e)qE,W = cosW�� 	 sinE�� 	 + (e − 1)qE,W��  

∴ qE,W = opO¯�8 � OPQ��8 �
E�W + 3 W��

E�W4 qE,W��. 
 

Note By reducing the power of sin 	 we may arrive at an alternative 

reduction formula given by qE,W = OPQ��8 � opO¯�8 �
E�W + 3E��

E�W4 qE��,W 
The ultimate integral depends on > and e being odd or even. 
 

9. Evaluate � !"#2 � ()!¸ �  ���/Ð� . 

Proof 

We have proved that qE,W = � sinE 	 cosW 	  �	      
         = opO¯�8 � OPQ��8 �

E�W + 3 W��
E�W4 qE,W��  

Let �(>, e) = � sinE 	 cosW 	  �	m/��  

∴ �(>, e) = ^opO¯�8 � OPQ��8 �
E�W _�

m/� + 3 W��
E�W4 �(>, e − 2). 

∴ �(>, e) = 3 W��
E�W4 �(>, e − 2). 

Case (i) m is even and n is even. 

Let > = 2  and e = 2¡ where  , ¡ ∈ ×. 

∴ �(2 , 2¡) = 3 ����
�����4 �(2 , 2¡ − 2)  
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          = (����)(���9)
(�����)(�������) �(2 , 2¡ − 4)  
…………………………………. 

          = (����)(���9)…�
(�����)(�������)…(����) �(2 , 0)  

Now �(2 , 0) = � cos�� 	  �	m/��  

  = 3����
�� 4 3���9

����4 … �
� 3m

�4. 
Hence �(2 , 2¡) = @�.9.`…(����)A@�.9.`…(����)A

�.5.a…(�����) 3m
�4 

Case (ii) m is odd and n is even. 

Let > = 2  − 1 and e = 2¡ where  , ¡ ∈ ×. 

∴ �(2  − 1, 2¡) = 3 ����
(�������)4 �(2  − 1, 2¡ − 2)  

      = (����)(���9)
(�������)(������9) �(2  − 1, 2¡ − 4)  

…………………………………. 

       = (����)(���9)…9.�
(�������)(������9)…(����) �(2  − 1,0)  

Now �(2  − 1, 0) = � sin���� 	  �	m/��  

         = 3����
����4 3���5

���94 … �
9 (1).  

∴ �(2  − 1, 2¡) = @�.5…(����)A@�.9.`…(����)A
�.9.`…(�������)   

Case (iii) m is even and n is odd. 

Let > = 2  and e = 2¡ − 1. We can prove that  

∴ �(2 , 2¡ − 1) = @�.9.`…(����)A@�.5.a…(����)A
�.9.`…(�������)   

Case (iv) m is odd and n is odd. 

Let > = 2  − 1 and e = 2¡ − 1 where  , ¡ ∈ × 

∴ �(2  − 1, 2¡ − 1) = 3 ����
(�������)4 �(2  − 1, 2¡ − 3)  

             = (����)(���5)
(�������)(������9) �(2  − 1, 2¡ − 5)  
…………………………………. 

             = (����)(���5)…�
(�������)(������5)…(����) �(2  − 1, 1)  

Now �(2  − 1, 1) = � sin���� 	 cos 	  �	m/��  

         = ^OPQ�? �
�� _�

m/� = �
��  

∴ �(2  − 1, 2¡ − 1) = @�.5.a…(����)A@�.5.a…(����)A
�.5.a…(�������)    
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Example  

1. � sina 	 cos� 	  �	m/�� = �.9.`.�.9.`.½
�.5.a.�.��.��.�5 3m

�4 = `m
�8�  

2. � sina 	 cos` 	  �	m/�� = �.9.`.�.5
�.9.`.½.:.�� = �

a:9 
3. � sin` 	 cosa 	  �	m/�� = �.5.�.9.`

�.9.`.½.:.�� = �
a:9 

4. � sin` 	 cos` 	  �	m/�� = �.5.�.5
�.5.a.�.�� = �

a� 
 

Example 29 

Evaluate q = � 	�(1 − 	�)9/� �	��  

Solution 

Put 	 = sin L. Hence �	 = cos L  �L. 
When 	 = 0, L = 0 and when 	 = 1, L = �/2. 
∴ q = � sin� L (cos� L)9/� cos L �Lm/��   

      = � sin� L cos5 L �Lm/��   

      = �.9.�
a.5.� 3m

�4  
      = m

9� . 
 

Example 30 

Establish a reduction formula for � 	E(log 	)W �	 
Solution 

Let qE,W = � 	E(log 	)W �	 
∴ qE,W = �

E���(log 	)W �(	E��)  
 = �

E�� ^(log 	)W	E�� − � 	E�� e (log 	)W�� 3�
�4 �	_  

 = �
E�� @(log 	)W	E�� − e � 	E (log 	)W���	A  

 = ���8
E�� (log 	)W − W

E�� qE,W��  
The ultimate integral is qE,� = � 	E�	 = ���8

E��  . 
 

Example 31 

If qW = � L sinW L �Lm/��  and e > 1 prove that qW = 3W��
W 4 qW�� + �

W� . Hence 
deduce that q̀ = �5:

��` . 
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Solution qW = �(sin L)W��(L sin L)�L  
Taking { = (sin L)W�� and �| = L sin L �L we get | = −L cos L + sin L  
∴ qW = @(sin L − L cos L)(sin L)W��A�

;�   
  −(e − 1)� (sin L − L cos L)(sin L)W�� cos L �Lm/��     

= 1 − (e − 1)� sinW�� L cos L �L;��   

    +(e − 1)� L(sin L)W�� cos� L �L;��   

= 1 − (e − 1)� (sin L)W���(sin L);��   

   +(e − 1)� L(sin L)W��(1 − sin� L)�L;��   

= 1 − W��
W @sinW LA�m/� + (e − 1)qW�� − (e − 1)qW  

∴ qW(1 + e − 1) = 1 − 3W��
W 4 + (e − 1)qW��  

∴ eqW = �
W + (e − 1)qW��  

∴ qW = 3W��
W 4 qW�� + �

W� . 
Now, q̀ = 35

`4 q9 + �
�` q9 = 3�

94 q� + �
:  

Also, q� = � L sin L �Lm/��  

   = @−L cos LA�m/� + � cos L �Lm/��   

   = @−L cos L + sin LA�m/� = 1  
Hence q9 = �

9 + �
: = ½

: ∴ q̀ = 5
` 3½

:4 + �
�` = �5:

��` . 
 

Exercise 8 

Evaluate the following integrals 

1. � 	� sin 	 �	m/��   2. � sec` 	 �	m/5�   

3.� 	�(1 − 	�)`/��	��   4. � tan9 	 �	m/5�  

5. � sin� 	 (sin9 	 + cos9 	)�	m/��  
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6. If qW = � 	 cosW 	 �	m/��  and e > 1  show that qW = − �
W� + 3W��

W 4 qW�� . 
Hence prove that q5 = 9m�

a5 − �
5 . 

Answers 

1. � − 2  2. 
½√�

� + 9
� log\√2 + 1] 3. 

m
9�   

4. 
�
� − �

� log 2  5. 
�
9 

 

4.9 Integration as the limit of a sum 

 We know that � �(	)�	g& = f limr→� ℎ∑ �(
 + 2ℎ)WAB�limr→� ℎ∑ �@
 + (2 − ℎ)AWAB�   where ℎ =
g�&

W  . 

 In particular if 
 = 0 and d = 1 we have � �(	)�	�� = limW→R
�
W∑ � 3 AW4WAB�   

We use this formula to express some definite integrals as the limit of a sum 

and also to evaluate certain limits. 

 

Example 32 

Evaluate � S��	g&  

Solution � S��	g& = limW→R ℎ ∑ �@
 + (2 − 1)ℎAWAB�   

    = limW→R ℎ@�(
) + �(
 + ℎ) + ⋯ + �(
 + (e − 1)ℎ)A  
    = limW→R ℎ²S& + S&�r + ⋯ + S&�(W��)r³  
    = limW→R ℎS&²1 + Sr + S�r + ⋯ + S(W��)r³  
    = limW→R ℎS& ^�¯���

���� _  
    = limW→R S&(Sg�& − 1) 3 r

����4        3¿2e~S ℎ = g�&
W 4 

    = S&(Sg�& − 1)    3¿2e~S limW→R 3 r
����4 = 14  

    = Sg − S&   
 

Example 33 

Evaluate � sin 	 �	g&  



146 

Differential and integral calculus 

Solution � �(	)�	g& = limW→R ℎ ∑ �@
 + (2 − 1)ℎAWAB�   

     = limW→R ℎ ∑ sin@
 + (2 − 1)ℎAWAB�   

     = limW→R ℎ @sin 
 + sin(
 + ℎ) + ⋯ + sin(
 + (e − 1)ℎ)A  
     = limW→R ℎ OPQ(Wr/�)

OPQ(r/�) sin ^
 + (e − 1) r
�_  

     = limW→R
(r/�)

OPQ(r/�) 2 sin ^�
� (d − 
)_ sin ^
 + g�&

� − r
�_  

     = 2 sin ^�
� (d − 
)_ sin ^�

� (
 + d)_  
     = cos 
 − cos d. 
 

 

Example 34 

Express limW→R∑ �
�(W��A�)WAB�  as a definite integral and hence evaluate the 

limit. 

Solution 

limW→R∑ �
�(W��A�)WAB� = limW→R

�
W∑ �

�(��A/W)�WAB�   

   = limW→R
�
W∑ � 3 AW4WAB�  where �(	) = �

�(����) 
   = � �(	)�	��   

   = � t�
�(����)

�� = @sin�� 	A�� = m
� . 

 

Example 35 

Express limW→R ^�
W + �

W�� + �
W�� + ⋯ + �

9W_  as a definite integral and hence 
evaluate the limit. 

Solution 

limW→R∑ �
W�A�WAB� = limW→R

�
W∑ �

��3 C̄4
�WAB� = limW→R

�
W∑ � 3 AW4�WAB�  where �(	) = �

��� 
  = � �(	)�	��   

  = � �
��� �	�� = @log(1 + 	)A��  

  = log 3. 
Exercise 9 

1. Evaluate the following by expressing it as the limit of a sum 
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(i) � 	��	g&   (ii) � 	9�	��   (iii) � cos 	 �	g&  

2. Express the following as a definite integral and hence evaluate 

(i) limW→R ^ �
W�� + �

W�� + ⋯ + �
�W_ 

(ii) limW→R∑ A[A��W�WAB�  

(iii) limW→R∑ W�
(W�A)[WAB�  

Answers 

1. (i) 
�
9 (d9 − 
9) (ii) �5  (iii) sin d − sin 
 

2. (i) log 2  (ii) 
�
5 log 2 (iii) 

9
� 
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UNIT-V 

 

DOUBLE AND TRIPLE INTEGRALS 

5.0 Introduction 

 In this section we shall discuss the Double integral, Evaluation of 

double integral, triple integral, change of variables in double and triple 

integral and introduce two important functions defined in terms of some 

improper integrals and derive some properties of these functions and 

Fourier series.     

 

5.1 Double integrals 

Definition 

 Let �(	, u) be a bounded real valued function defined on a closed 
rectangle v = ((	, u)| 
 ≤ 	 ≤ d 
e� ~ ≤ u ≤ �). 
Let Ô  be a partition of v  into >  sub-rectangles v�, v�, … , vE  by lines 

parallel to coordinates axes. We define the norm of the partition Ô as  ‖Ô‖ = maximum of the lengths of the diagonals of the sub-rectangles v�, v�, … , vE. Let (	A , uA) ∈ vA. 
 Consider the sum ∑ �(	A , uA)�(vA)EAB�  where �(vA) stands for the 
area of the rectangle vA . 
 The function �(	, u) is said to be Riemann integrable over v if lim‖Ý‖→�∑ �(	A , uA)�(vA)EAB�  exists and is finite. 

 The value of the above limit is called the double integral of 

�(	, u) over v and it is denoted by ∬ �(	, u) �	 �uß . 

 Thus ∬ �(	, u) �	 �uß = lim‖Ý‖→�∑ �(	A , uA)�(vA)EAB� . 

 Now, let �(	, u) be a function defined on a bounded set Å. Let v 
be any closed rectangle with sides parallel to the coordinate axes 

containing Å. We define a new function �� on v by 
��(	, u) = 0�(	, u) 2� (	, u) ∈ Å0          2� (	, u) ∉ Å     

 �(	, u) is said to be integrable over Å  iff ��(	, u) is integrable 
over v. 
 The double integral of �(	, u) over Å is defined by the equation ∬ �(	, u) �	 �u� = ∬ ��(	, u) �	 �uß  



149 

Differential and integral calculus 

 This definition is independent of the choice of the rectangle v 
containing Å . The double integral ∬ �(	, u) �	 �u�  is also written as ∬ �(	, u) ���  or ∬ �(	, u) �(	, u)� . 

 

Note ∬ �	 �u�  represents the area of the region Å. 
 

5.2 Evaluation of double integrals 

Double integrals 

 Let �(	, u)  be a continuous function defined on a closed 
rectangle v = ((	, u)| 
 ≤ 	 ≤ d 
e� ~ ≤ u ≤ �).  
 For any fixed 	 ∈ @
, dA consider the integral � �(	, u)�ut� . 

 The value of this integral depends on 	  and we get a new 
function of 	 . This can be integrated with respect to 	  and we get � ^� �(	, u)�ut� _ �	g& . This is called an iterated integral. 

 Similarly we can define another integral � ^� �(	, u)�	g& _ �ut� . 

 For continuous functions �(	, u)  we have ∬ �(	, u) �	 �uß =� ^� �(	, u)�ut� _ �	g& = � ^� �(	, u)�	g& _ �ut�     

 We omit the proof of this result. 

 If �(	, u) is continuous on a bounded region Ø and if Ø is given by Ø = ((	, u)| 
 ≤ 	 ≤ d 
e� Ú�(	) ≤ u ≤ Ú�(	))   where Ú�  and Ú�  are 

two continuous functions defined on @
, dA then  ∬ �(	, u) �	 �u� = � ^� �(	, u)�u÷�(�)
÷8(�) _ �	g& . 

The iterated integral in the right hand side is also written in the form 

 � �	g& � �(	, u)�u÷�(�)
÷8(�) . 

Similarly if Ø = ((	, u)| ~ ≤ u ≤ � 
e� Ú�(u) ≤ 	 ≤ Ú�(u))  then � ^� �(	, u)�	÷�(b)
÷8(b) _ �ut�   

If Ø cannot be written in either of the above two forms we divide Ø into finite number of subregions such that each of the subregion can be 

represented in one of the above forms and we get the double integral 

over Ø by adding the integrals over these subregions. 
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Hence to evaluate ∬ �(	, u) �	 �u�  we first convert it to an 

iterated integral of the two forms given above. 

Example 1 

Evaluate q = � � 	u �u ��(&�)
��/�& �	5&�  

Solution 

q = � ^�b�
� _��/5&

��(&�) �	5&� . 

   = �
�� 	 ^4
	 − ��

�a&�_ �	5&� = �
� ^5&�[

9 − �é
:a&�_�

5&
  

   = a5 &�
9  . 

 

Example 2 

Evaluate q = � �	 � 	9u �u g�@��(��/&�)A
�&�  

Solution 

q = � ^�
� 	9u�_�

g�@��(��/&�)A �	&�   

   = �
�� d�	9 31 − ��

&�4 �	&� = �
� d� ^�

5 	5 − �é
a&�_�

&
  

   = &�g�
�5 . 

 

Example 3 

Evaluate q = � � ¼ sin L  �¼& opO I� �Lm�  

Solution 

q = � sin L ^�
� ¼�_�

& opO I �Lm�   

   = �
�� 
� cos� L sin L �Lm� = − �

� 
� � cos� L �(cos L)m�   

   = − �
a 
�@cos9 LA�m  

   = �
9 
�. 

 

 

Example 4 

Evaluate � � Â
(Â��&�)� �¼ �LR�m/��  
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Solution 

Let q = � � Â
(Â��&�)� �¼ �LR�m/��  

         = � ý� 8� t\Â�]
(Â��&�)�R� þm/��  �L = � �

� ^ ��
Â��&�_;�� �

R �L  
        = �

�� tI
&�m/�� = ^ I

�&�_�
m/�

  

        = m
5&�  

 

Example 5 

Evaluate ∬ 	�u��	 �u�  where D is the circular disc 	� + u� ≤ 1 
Solution 

In D, x varies from -1 to 1. For a fixed x, y varies from −�(1 − 	�) to 
�(1 − 	�) 
∴ ∬ 	�u� �	 �u� = � � 	� u� �u �	�(����)

��(����)���   

        = 4� � 	� u� �u �	�(����)
���   

        = 4� ^�
9 	� u9_�

�(����) �	��   

        = 5
9� 	�(1 − 	�)9/� �	��   

        = 5
9� sin� L cos5 L �Lm/��    (putting 	 = sin L) 

        = 5
9 3�.9.�

�.5.a4 3m
�4 = m

�5  
 

Example 6 

Change the order of integration in the integral q = � � �(	, u)�	bb/� �u5�  

Solution 

The region of integration Å is bounded by the lines 	 = b
� ; 	 = u; u = 1 

and u = 4. The region is a quadrilateral as shown in the figure. 
In this region 	 varies from 

�
� to 4 

When 
�
� ≤ 	 ≤ 1, u varies from 1 to 2	. 

When 1 ≤ 	 ≤ 2, u varies from 	 to 2	. 
When 2 ≤ 	 ≤ 4, u varies from 	 to 4. 
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Hence for changing the order of integration we must divide Å into sub 
regions Å�, Å�, Å9 as shown in the figure 
∴ q = ∬ �(	, u)�	 �u�   

= � � �(	, u)�	 �u�8 + � � �(	, u)�	 �u�� + � � �(	, u)�	 �u�[   

= � � �(	, u)�u��� �	��/� + � � �(	, u)�u��� �	�� + � � �(	, u)�u5� �	5�   

 

Example 7 

Change the order of integration for q = � � �(¼, L)¼ �¼�& opO I� �Lm/��  

Solution 

We know that ¼ = 2
 cos L represents a circle with centre (
, 0) 
and radius 
. 

Since 0 ≤ L ≤ �/2 the region of integration is the semicircular 

disc lying in the first quadrant. 

In this region ¼ varies from 0 to 2
. 
Further ¼ = 2
 cos L implies L = cos�� 3 Â

�&4. 
Hence for each fixed ¼, L varies from 0 to cos�� 3 Â

�&4. 
Hence q = � � �(¼, L)¼�L opO�83 G�°4� �¼�&� . 

 

Example 8 

Evaluate ∬ (	� + u�)�	 �u�  where Å  is the region bounded by u =
	�, 	 = 2 and u = 1. 
Solution 

The region of integration is as shown in the figure. 

In this region 	 varies from 1 to 2 and for each fixed 	, u varies from 1 to 	�. 
∴ ∬ (	� + u�)�	 �u� = � � (	� + u�)�u��

� �	��   

   = � ^	�u + �
9 u9_�

�� �	��   

   = � 3	5 + �
9 	a4 �	��   

   = ^�
` 	` + �

�� 	½_�
� = ���a

��`   
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Exercise 1 

1. Evaluate the following integrals. 

    (i) � � (	� + u�)�	�� �u��   (ii) � � t�tb
(��b)���59  

    (iii) � � u9�u�&����
� �	&�   (iv) � � 	u�	�bb�& �u&�   

     (v) � � Â tÂ tI
(Â��&�)�R�m/��   (vi) � � ¼� �¼ � opO I� �Lm/��m/�  

     (vii) � � tÂ tI
√���Â

�opO �Im/a�  

2. Change the order of integration in the following integrals 

     (i) � � �(	, u)�u59 �	��    

     (ii) � � 	��u√&�� �	&� . Hence evaluate   

      (iii) � � b t�tb
(&��)�(&��b�)

bb�/&&�  . Hence evaluate  

       (iv) � � �(	, u)�u5b√�b� �	��   (v) � � �(	, u)�	C�E� �u&�  

3. Evaluate ∬ (1 + 	 + u)�	 �u�  where Å is the region bounded by the 
lines u = −	, 	 = �u, u = 0 and u = 2. 
Answers 

1. (i) 
�
9   (ii) log 3�`

�54  (iii) 
�

�` 
5  (iv) 
��
�5 
5 

(v) 
m

5&�  (vi) 
9�
:    (vii) 

m
9 − 1 

2. (i) � � �(	, u)�	�� �u59    (ii) 
�
½ 
5 

(iii) � � b tb t�
(&��)�(&��b�)

√&��&� ; �
� �
 

(iv) � � �(	, u)�u√��/5√� �	5� + � � �(	, u)�u��/5√� �	�√�5  

(v) � � �(	, u)�ub/Eb/C �	E&� + � � �(	, u)�u&b/C �	C&E&  

3. 
55
�` √2 + `

9 
 

5. 3 Triple Integrals 

 The definition of triple integrals for a function �(	, u, §) defined 
over a region Å in v9 is analogus to the definition of double integral is 
defined in 5.1. In definition of 5.1 we replace rectangles by parallelepipeds 

and area by volume to obtain the corresponding definition of triple 

integrals. 
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 A triple integral of a function defined over a region Å is denoted 
by ∭ �(	, u, §)�	 �u �§�  or ∭ �(	, u, §)���  or ∭ �(	, u, §)�(	, u, §)�  

 The triple integral can be expressed as an iterated integrals in 

several ways. For example if a region Å in v9 is given by Å = ((	, u, §)|
 ≤ 	 ≤ d; Φ�(	) ≤ u ≤ Φ�(	); ψ�(	, u) ≤ § ≤ ψ�(	, u))  
then ∭ �(	, u, §)�	 �u �§� = � � � �(	, u, §)�§K�(�,b)K8(�,b) �uL�(�)L8(�) �	g& . 

This can also be written as � �	 � �u � �(	, u, §)�§K�(�,b)K8(�,b)L�(�)L8(�)g& . 

 Similarly under suitable conditions a given triple integral can be 

expressed as an iterated integral in five other ways by permuting the 

variables. 

 

Example 9 

Evaluate q = � � � 	u§ �§ �u �	b���&�  

Solution 

q = � � ^�
� 	u§�_�

b  �u �	��&�   

   = �
�� � 	u9 �u �	��&� = �

�� ^�
5 	u5_�

�  �	&�   

   = �
�� 	` �	&� = �

� ^�
a 	a_�

&
  

   = &é
5�  

 

Example 10 

Evaluate q = � � � S��b�¨ �§ �u �	��b���Xp� &�  

Solution 

q = � � @S��b�¨A���b �u �	��Xp� &�   

   = � � ²S�(��b) − S��b³ �u �	��Xp� &�   

   = � ^�
� S�(��b) − S��b_�

�  �	Xp� &�   

   = � 3�
� S5� − 9

� S�� + S�4Xp� &�  �	  
   = ^�

� S5� − 9
5 S�� + S�_�

Xp� &
  

    = �
� 
5 − 9

� 
� + 
 − 9
�  
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Example 11 

Evaluate q = ∭ t� tb t¨
(��b�¨��)[�  where Å is the region bounded by the planes 

	 = 0, u = 0, § = 0 and 	 + u + § = 1. 
Solution 

The given region is a tetrahedron. The projection of the given 

region in the 	 − u plane is the triangle bounded by the lines 	 = 0, u = 0 
and 	 + u = 1 as the shown in the figure. 

In the given region 	 varies from 0 to 1. For each fixed 	, u varies 
from 0 to 1 − 	. For each fixed (	, u), § varies from 0 to 1 − 	 − u. 
∴ q = � � � t� tb t¨

(��b�¨��)[����b�������    

       = − �
�� � @(	 + u + § + 1)��A�����b�u �	������   

      = − �
�� � ^�

5 − (	 + u + 1)��_ �u �	������   

       = − �
�� ^�

5 u + (	 + u + 1)��_�
��� �	��   

       = − �
�� M�

5 (1 − 	) + �
� − (	 + 1)��N�	��   

       = − �
� ^�

5 	 − �
� 	� + �

� 	 − log(	 + 1)_�
�
  

      = �
� log 2 − `

�a . 
 

Exercise 2 

1. Evaluate the following triple integrals. 

    (i) � � � 	u§ �§ �����b� �u�� �	��   

    (ii) � �	 � �u � 	�u§ �§ ������   

    (iii) � � � ¼� sin L  �¼,� �Lm/�� �Úm�  

2. Evaluate ∭ (	� + u� + §�)�	 �u �§�  where Å is the region bounded 
by the planes 	 + u + § = 
; 	 = 0; u = 0 and § = 0. 
Answers 

1. (i) 
9
�   (ii) 1  (iii) 

�
9 *9�  2. 

�
�� 
` 
5.4 Change of Variables in double and triple integrals 

 The evaluation of a double or a triple integral sometimes 

becomes easier when we transform the given variables into new variables. 
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 We state without proof the following theorem regarding change 

of variables in double and triple integrals. 

 

Theorem 1 

Consider a transformation given by the equation 	 = 	({, |)  and u =u({, |) where 	 and u have continuous first order partial derivatives. Let 
the region Å in the 	 − u plane be mapped into the region Å∗ in the { − | 
plane. Further we assume that the Jacobian of the transformation � ≠ 0 for 
all points in Å. Then ∬ �(	, u)�	 �u� = ∬ �@	({, |), u({, |)A|�|�{ �|�∗ . 

Similarly for triple integrals we have  ∭ �(	, u)�	 �u� = ∭ �@	({, |,�), u({, |,�), §({, |,�)A|�|�{ �| ���∗   

 

Example 12 

Evaluate q = ∬ �bt�tb
����b��  by transforming to polar coordinates where Å is 

the region enclosed by the circles 	� + u� = 
� and 	� + u� = 4
� in the 
quadrant. 

Solution 

Put 	 = ¼ cos L and u = ¼ sin L 
We know that � = ¼. 
Further in the given domain Å, 0 ≤ L ≤ �/2 and 
 ≤ ¼ ≤ 2
. 
∴ q = � � 3Â opO IÂ OPQ I

Â 4 ¼ �¼�&& �Lm/��   

      = � cos L sin L ^�
9 ¼9_&

�& �Lm/��   

      = ½&[
9 � cos L sin L  �Lm/��   

      = ½&[
9 � sin L  �(sin L)m/��   

      = ½&[
a @sin� LA�m/�

  

      = ½&[
a   

Example 13 

Evaluate the improper integral q = � S����	R� . 

Solution 

q� = qq = \� S����	R� ]\� S�b��uR� ]  
      = � � S�\���b�]�	R� �uR�   
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Put 	 = ¼ cos L and u = ¼ sin L. Hence � = ¼. 
The region of integration is the entire first quadrant. 

Hence ¼ varies from 0 ¢¾ ∞ and L varies from 0 ¢¾ �/2. 
∴ q� = � � S�Â�¼ �Lm/�� �¼R� = m

� � S�Â� ¼ �¼R� . 

        = m
� � − �

� S�Â� �(−¼�)R� = m
� ^− �

� S�Â�_�
R
  

        = m
� 3�

�4 = m
5  

∴ q = √m
�   

 

Example 14 

Prove that q = ∬ 3�����b�
�����b�4�/�  �	 �u� = m

5 3m
� − 14 where D is the positive 

quadrant of the circle 	� + u� = 1 
Solution 

Put 	 = ¼ cos L and u = ¼ sin L. ∴ � = ¼. 
Further in D, 0 ≤ ¼ ≤ 1 and 0 ≤ L ≤ �/2 
∴ q = � � 3��Â�

��Â�4�/� ¼ �L �¼m/����   

      = m
� � 3��Â�

��Â�4�/� ¼ �¼��   

     = m
� � ��Â�

√��Â�  ¼ �¼��   

     = m
5 � ��£

���£�  �¢��        (by putting ¼� = ¢) 
     = m

5 ^sin�� ¢ + (1 − ¢�)8�_�
�
  

     = m
5 3m

� − 14  
 

 

Example 15 

Evaluate ∬ �	� + u� �	 �u�  where Å is the parallelogram bounded by 

the lines 	 + u = 0; 	 + u = 1; 2	 − 3u = 0 and 2	 − 3u = 4. 
Solution 

Put 	 + u = { and 2	 − 3u = |. 
Then � = − �

` 
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Also Å is transformed into the rectangle bounded by the lines { = 0; { =1; | = 0 and | = 4. 
∴ q = � � √{ 3− �

`4 �|5� �{�� = − �
`� √{@|A�5 �{��   

      = − 5
` ^�

9 {9/�_�
�
  

      = − �
�`  

 

Example 16 

Evaluate q = ∭ 	u§ �	 �u �§�   where D is the positive octant of the 

ellipsoid 
��
&� + b�

g� + ¨�
�� = 1. 

Solution 

Put 	 = 
{, u = d| and § = ~� 
∴ � = Ä(�,b,¨)

Ä(c,},�) = �
 0 00 d 00 0 ~� = 
d~  
Let Å∗ be the image of D under the above transformation. Then Å∗ is the 
positive octant of the sphere {� + |� + �� = 1. 
∴ q = ∭ 
d~ {|� 
d~ �{ �| ���∗   

      = 
�d�~� ∭ {|� �{ �| ���∗   

Now, put { = ¼ sin L cos Ú | = ¼ sin L sin Ú  � = ¼ cos L  
Then � = ¼� sin L 
∴ q = 
�d�~� � � � ¼` sin9 L cos L cos Ú sin Úm/��m/����  �Ú �L �¼     
      = 
�d�~� � ¼`�¼�� � sin9 L cos L  �Lm/�� � sin Ú cos Ú  �Úm/��   

      = 
�d�~� ^�
a ¼a_�

� ^�
5 sin5 L_�

m/� ^�
� sin� Ú_�

m/�
  

      = &�g���
5�   

 

Exercise 3 

1. Evaluate the following double integrals using change of variables or 

otherwise over the region indicated. 
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    (i) ∬ �(	� + u�) �	 �u� ; Å is the region bounded by the circle 	� +
u� = 
�. 
    (ii) ∬ �(	� + u�) �	 �u� ; Å is the region in the 	 − u plane bounded 
by  	� + u� = 4 and 	� + u� = 9. 
2. By transforming into polar coordinates evaluate. 

    (i) � � ��t� tb
(���b�)[/�&�&�   (ii) � � 5�b

���b�  S�\���b�] �u �	�����
���  

3. Prove that ∭ 	u§(	� + u� + §�)W/� �	 �u �§�  where Å is the positive 
octant of the sphere 	� + u� + §� = 
� is &¯�é

�(W�a) where e + 5 > 0. 
4. Evaluate ∭ 	u§ 3��

&� + b�
g� + ¨�

��4  �	 �u �§�  where Å  is the positive 

octant of ellipsoid 
��
&� + b�

g� + ¨�
�� = 1. 

Answers 

1. (i) 
�
9 �
9   (ii) 

9�
9 �  

2. (i) 
/√2   (ii) 1/S  
 

BETA AND GAMMA FUNCTIONS 

5.5 Beta and Gamma functions 

Definition 

 The Beta function is defined by 

=(>, e) = � 	E��(1 − 	)W�� �	��     (>, e > 0). 
 The Gamma function is defined by Γ(e) = � S�� 	W�� �	R�      (e > 0). 
 

Theorem 2 

The Beta function =(>, e) converges if >, e > 0. 
Proof 

Let q = � 	E��(1 − 	)W�� �	�� = q� + q�  where q� = � 	E��(1 −�/��	)W�� �	 
 We first consider q�. 

When > ≥ 1 it is a proper integral and hence q converges. 
When > < 1 the function �(	) = 	E��(1 − 	)W�� has an infinite 

discontinuity at 	 = 0. 
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Now lim�→� 	��E�(	) = lim�→�(1 − 	)W�� = 1. 
Hence by Q-test, q� is convergent if 1 − > < 1. 
(i.e.) q� is convergent if > > 0. 
Similarly q� is convergent if e > 0. 
Hence q = q� + q� converges when > > 0 and e > 0. 

 

Theorem 3 

The Gamma function Γ(e) converges if e > 0. 
Proof 

Let q = � S��	W���	R�     (e > 0) 
= q� + q�  where q� = � S��	W�� �	&�  and q� = � S��	W�� �	R&  and 
 > 0 . 
First we consider q�. 
 When e ≥ 1 it is a proper integral and hence q� converges. When e < 1, �(	) = S��	W�� has an infinite discontinuity at 	 = 0. 
 In this case lim�→� 	��W�(	) = lim�→� S�� = 1. 
 Hence by Q-test q� is convergent if 1 − e < 1. 
 (i.e.) q� is convergent if e > 0. 
 Now we consider q�. 
 When 	 > 0, S� > �G

Â!  for any positive integer ¼. 
 ∴ S�� < Â!

�G  
 ∴ S��	W�� < Â!

�G�¯�8 
 Whenever e may be, we can choose ¼ such that ¼ − e + 1 > 1. 
 With this choice of ¼,� t�

�G�¯�8R&  is convergent. 

 Hence by comparison test q� is convergent. 
 Hence q = q� + q� converges when e > 0. 
 

 

Properties and results involving Beta and Gamma Functions 

1. R(2, ¸) = � �2�$
($��)2�¸  ��R�  

Proof 

Put 	 = b
��b. Hence u = �

��� . 
When 	 = 0, u = 0. When 	 → 1, u → ∞. 
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Also �	 = tb
(��b)� . 

∴ =(>, e) = � b��8
(��b)��8(��b)¯�8(��b)� �uR�   

       = � b��8
(��b)��¯ �uR�   

        = � ���8
(���)��¯ �	R� . 

 

2. R(2, ¸) = Ð� (!"# �)Ð2�$(()! �)Ð¸�$ ���/Ð�  

Proof 

Put 	 = sin� ¢. 
When 	 = 0; ¢ = 0 and when 	 = 1; ¢ = �/2. 
 ∴ =(>, e) = � (sin� ¢)E��(cos� ¢)W��2 sin ¢ cos ¢ �¢m/��  

        = 2� (sin 	)�E��(cos 	)�W�� �	m/�� . 

 

3. R(2, ¸) = R(¸,2) 
Proof 

=(>, e) = � 	E��(1 − 	)W�� �	�� . 

Put 	 = 1 − u. ∴ When 	 = 0, u = 1 and when 	 = 1, u = 0. 
∴ =(>, e) = � 	E��(1 − 	)W�� �	��   

      = � (1 − u)E��uW�� (– �u)��   

      = � uW��(1 − u)E�� �u��   

      = =(e, >). 
 

4. R(2, ¸) = R(2 + $, ¸) + R(2, ¸ + $)  
Proof 

=(>, e) = � 	E��(1 − 	)W�� �	��   

   = � 	E��(1 − 	)W��(	 + 1 − 	) �	��   

   = � 	E(1 − 	)W�� �	�� + � 	E��(1 − 	)W �	��   

   = =(> + 1, e) + =(>, e + 1). 
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5. S(¸ + $) = ¸S(¸) 
Proof Γ(e + 1) = � 	WS���	R�   

     = lim&→R²� 	WS���	&� ³ = lim&→R²−� 	W�(S��)&� ³  
     = lim&→R²@−	WS��A�& + � eS��	W�� �	&� ³  
      = lim&→R@−	WS�&A�& + eΓ(e)  
      = eΓ(e)  ^¿2e~S lim&→R(−	WS�&) = 0_ 
 

6. S($) = $ 
Proof Γ(1) = � 	S���	R�   

         = lim&→R²@−	S��A�& + � S��  �	&� ³  
          = lim&→R@−S��A�&   
          = lim&→R@−S�& + 1A  
          = 1. 
 

7. S(¸ + $) = ¸! where ¸ is a positive integer. 
Proof 

We have Γ(e + 1) = eΓ(e)  (by 5) 

         = e(e − 1)Γ(e − 1)  
         = e(e − 1) … 2.1. Γ(1)  
         = e!      (using 6) 

 

8. S(¸) = Ð� 8��Ð�Ð¸�$ ��R�  

Proof 

We have Γ(e) = � S��	W���	R�   

Put 	 = u�. Hence �	 = 2u �u. 
∴ Γ(e) = � S�b�(u�)W��2u �uR�   

 = 2� S�b�u�W�� �uR�   
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9. R(2, ¸) = S(2)S(¸)S(2�¸)  
Proof 

We have (by 8) Γ(>) = 2� S�b�u�E�� �uR�  and  Γ(e) = 2� S���	�W�� �	R�   

∴ Γ(>)Γ(e) = 4� S�b�u�E�� �uR� � S���	�W�� �	R�   

          = 4� � S�\���b�] 	�W�� �	R� �uR� . 

Put 	 = ¼ cos L and u = ¼ sin L. Hence |�| = ¼. 
Further the region of integration is the entire first quadrant and hence ¼ 
varies from 0 to ∞ and L varies from 0 to �/2. 
∴ Γ(>)Γ(e) = 4� � S�Â� ¼�E��W��(cos L)�W��(sin L)�E�� �Lm/�� �¼R�   

= 4� S�Â�¼�E��W�� �¼R� � (cos L)�W��(sin L)�E�� �Lm/��   

= 4� S�Â�(¼�)E�W�� �
� �(¼�)R� � (cos L)�W��(sin L)�E�� �Lm/��   

= 4 ^�
� Γ(> + e)_ ^�

� =(>, e)_    (using (2)) 

= Γ(> + e)=(>, e) . 
∴ =(>, e) = T(E)T(W)T(E�W)   
 

10. S 3$Ð4 = √� 
Proof 

We have Γ(e) = 2� S���	�W�� �	R�   (using 8) 

  = 2� S���	�(�/�)�� �	R�   

∴ Γ 3�
�4 = 2 � S���  �	R� = 2 3√m

� 4  
  = √� . 
Alter We know that =(>, e) = � (sin 	)�E��(cos 	)�W�� �	m/��    

∴ = 3�
� , �

�4 = 2� �	m/�� = 2@	A�m/� = �  
∴ T38�4T38�4T(�) = �      (using (9)) 

∴ @Γ(1/2)A� = �  
∴ Γ 3�

�4 = √�  
 

11. S(¸) = � @*)+($/�)A¸�$ ��$�  
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Proof 

We have that Γ(e) = � S��	W�� �	R� . 

Put 	 = log(1/u). Hence �	 = −(1/u)�u 
When 	 = 0, u = 1 and when 	 = ∞, u = 0. 
∴ Γ(e) = � u ^log 3�

b4_W�� 3− �
b4 �u��   

 = � ^log 3�
�4_W�� �	��  . 

 

12. ÐÐ¸�$S(¸)S 3¸ + $
Ð4 = S(Ð¸)√�  

(This is known as the duplication formula)  

Proof 

Let q = � sin�W 	  �	m/��  

We notice that � sin�W 2	  �	m/�� = q   
For, � sin�W 2	  �	m/�� = �

�� sin�W u  �um�   (putting 2	 = u) 
   = � sin�W u  �um/��   

(since sin�W(� − u) = sin�W u) 
   = q  
Taking q = � sin�W 	  �	m/�� = � (sin 	)�3W�8�4��(cos 	)�38�4�� �	m/��  

   = �
� = 3e + �

� , �
�4    (by 2) 

   = T3W�8�4T38�4
�T(W��) = T3W�8�4√m

�T(W��)      (1) 

Now taking q = � sin�W 2	  �	m/��    

           = � 2�W(sin 	)�W(cos 	)�W �	m/��   

           = 2�W ^�
� = 3e + �

� , e + �
�4_   (by (2)) 

          = 2�W�� T3W�8�4T3W�8�4T(�W��)      (2) 

From (1) and (2) we get T3W�8�4√m
�T(W��) = 2�W�� T3W�8�4T3W�8�4T(�W��)   

∴ Γ(2e + 1)√� = 2�WΓ(e + 1)Γ 3e + �
�4. 

∴ 2e Γ(2e)√� = 2�WeΓ(e)Γ 3e + �
�4  (using (5)) 
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∴ 2�W��Γ(e)Γ 3e + �
�4 = Γ(2e)√�. 

 

13. S 3$U4S 3VU4 = √Ð� 
Proof 

Put e = �
5 in the duplication formula. 

∴ Γ 3�
54 Γ 39

54 = T38�4√m
��8�   

  = √2�  
 

Example 17 

Evaluate � 	aS�9��	R�  

Solution 

Put u = 3	. Hence �u = 3 �	. 
Now, � 	aS�9��	R� = � 3b

94a S�b 3tb
9 4R�  

           = 3�
94½ � uaS�b�uR� = 3�

94½ Γ(7)  
           = 3�

94½ 6! = ��
�59 . 

 

Example 18 

Prove that � ��W¥
√£  �¢R� = ��/¿ where ¿ > 0 

Solution 

Put ¿¢ = {. Hence ¿ �¢ = �{ 
∴  � ��W¥

√£  �¢R� = �
√ï � S�c{3�8�4R� �{  

          = �
√ï Γ 3�

�4 = ��/¿  
 

Example 19 

Evaluate q = � 	5(1 − 	)9�	��  

Solution 

q = � 	`��(1 − 	)5���	��   

   = =(5, 4) = T(`)T(5)T(:) = 5!9!
�! = �

���  
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Example 20 

Prove that � tI
√OPQ I

m/�� � √sin L �Lm/�� = � 
Solution � √sin L �Lm/�� = � (sin L)8�(cos L)��Lm/��   

  = � (sin L)�3[�4��(cos L)�38�4���Lm/��   

  = �
� = 39

5 , �
�4     (by 2) 

  = �
� ýT3[�4T38�4T3��4 þ = �

� ýT3[�4T38�4
8� T38�4 þ  

  = 2 ýT3[�4T38�4T38�4 þ  
Now, � tI

√OPQ I
m/�� = � (sin L)3�8�4�Lm/�� = �

� = 3�
5 , �

�4 
      = �

� ýT38�4T38�4T3[�4 þ  
∴ � tI

√OPQ I
;�� � √sin L �L;�� = ýT38�4T38�4

� T3[�4 þ × ý� T3[�4T38�4T38�4 þ  
^Γ 3�

�4_� = �     (by 10) 

 

Example 21 

Prove that � sinE 	 cosW 	  �	m/�� = �
� = 3E��

� , W��
� 4 . Hence find (i) � sin` 	 cosa 	  �	m/��    (ii) � sina 	 cos� 	  �	m/��  

Solution 

We know =( , ¡) = 2�  (sin 	)����(cos 	)���� �	m/��  

Put   = E��
�  and ¡ = W��

�  

∴ 2  − 1 = > and 2¡ − 1 = e 
= 3E��

� , W��
� 4 = 2� sinE 	 cosW 	  �	m/��   

Hence � sinE 	 cosW 	  �	m/�� = �
� = 3E��

� , W��
� 4 

(i) � sin` 	 cosa 	  �	m/�� = �
� = 3`��

� , a��
� 4 = �

� = 33, ½
�4 

  = �
� ^T(9)T(½/�)T(�9/�) _ = �

� ý T(9)T(½/�)88� .À�.��.T(½/�)þ = �
� 3 �!�[

��.:.½4 = �
a:9  

(ii) � sina 	 cos� 	  �	m/�� = �
� = 3a��

� , ���
� 4 = �

� = 3½
� , :

�4 



167 

Differential and integral calculus 

  = �
� ^T(½/�)T(:/�)T(�) _ = �

� ý��.[�.8�T(�/�)��.��.[�.8� T(�/�)
½! þ  

  = m
� ^�.9.`.�.9.`.½

��.½! _ = m
� ^ ½!`!

9.�8�.½!_  
  = `m

�8�  
 

Example 22 

Prove that � S���  �	R� = √m
�  using Gamma function. 

Solution 

Let q = � S���  �	R�  

Put 	� = u so that �	 = tb
�� = tb

�√b 
∴ q = � S�b tb

�√b
R� = �

�� S�b u8����uR� = �
� Γ 3�

�4 = √m
�   

Exercise 4 

1. Evaluate  (i) � 	aS�9��	R�   (ii) � 	�S����	R�  

2. Evaluate � 	½(1 − 	)��	��  

3. Evaluate (i) � 	�(1 − 	)9�	��  (ii) � 	9(1 − 	�)`/��	��  

        (iii) � 	9√1 − 	 �	��  

4. Find the value of � ��\����]
(���)8� �	R�  

5. Evaluate (i) � cos9 	 sina 	  �	m/��        (ii) � sin9 	 cos�� 	  �	m/��  

Answers 

1. (i) 
��

�59 (ii) 
√�m
�a   2. 

½!�!
�a!   3. (i) 

�
a�    (ii) 

�
:     (iii) 

�
9  

4. 
�

`��`  5. (i) 
�

a9 (ii) 
�

�59 
 

FOURIER SERIES 

5.6 Fourier series 

Definition 

Let �(	) be a bounded integrable function defined on @−�, �A. 
The trigonometric series 

&¯� + ∑ (
W cos e	 + dW sin e	)RWB�  where 


� = �
m � �(	) �	m�m   


W = �
m � �(	) cos e	  �	m�m   
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dW = �
m � �(	) sin e	  �	m�m   

is called Fourier series of �(	) and 
W , dW are called Fourier coefficients of �(	)  
 Fourier proved that for several functions �(	), its Fourier series 
actually converges to �(	). 
 

Note If �(	) is defined in an arbitrary interval @Î, Î + 2QA of length 2Q,  
 

5.6.1 The Cosine and Sine series 

 Let �(	) be defined in the interval @0, �A. Define �(	) = �(−	) if – � ≤ 	 ≤ 0. Then �(	) is an even function in @−�, �A. 
 We know that sin e	 is an odd function and cos e	 is an even 
function. Hence �(	) sin e	 is an odd function and �(	) cos e	 is an even 
function. 

∴ dW = �
m � �(	) sin e	  �	m�m = 0 and 
W = �

m � �(	) cos e	  �	m�m  

(i.e.) 
W = �
m � �(	) cos e	  �	m�m  

 Hence the corresponding Fourier series of �(	)  is the cosine 
series given by �(	) = &3� + ∑ 
W cos e	  �	RWB�  where 
W is given above. 
 Similarly if we define �(	) = −�(	) if – � ≤ 	 ≤ 0 then �(	) in an 
odd function in @−�, �A and its Fourier series becomes the sine series ∑ dW sin e	RWB�  where dW = �

m � �(	) sin e	  �	m�m . 

 

Example 23 

Determine the Fourier expansion of �(	) = 	 where – � < 	 < � 
Solution 

Let �(	) = 	 

� = �

m � �(	) �	m�m   

     = �
m� 	 �	m�m   

     = �
m ^��

� _�m
m = 0  


W = �
m � �(	) cos e	  �	m�m   

      = �
m � 	 cos e	  �	m�m   

      = �
m ^^� OPQ W�

W _�m
m − �

m� sin e	  �	m�m _  
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      = �
m ^� OPQ W�

W + opO W�
W� _�m

m
  

     = �
W�m ^opO W�

W _�m
m
  

    = �
W�m @cos e� − cos(−e�)A  

    = �
W�m (cos e� − cos e�) = 0  

dW = �
m � 	 sin e	  �	m�m   

     = �
m ^�� opO W�

W + OPQ W�
W� _�m

m
  

    = − �
Wm @� cos e� + � cos e�A  

    = − � opO Wm
W   

    = − �(��)¯
W   

     = �(��)¯�8
W   

∴ 	 = ∑ (−1)W��  3�
W4 sin e	RWB�   

∴ 	 = 2 ^OPQ �
� − OPQ ��

� + OPQ 9�
9 − ⋯ _  

 

Example 24 

If �(	) = 0−	 2� − � < 	 < 0	 2� 0 ≤ 	 < �  expand �(	) as a Fourier series the interval 
(−�, �) 
Solution 

Clearly �(−	) = �(	) for all 	 ∈ (−�, �). ∴ �(	) is an even function in (−�, �). 
∴ �(	)  can be expanded as a Fourier series of the form 

&¯� +∑ 
W cos e	RWB� . 


� = �
m � �(	) �	m�m   

      = �
m � �(	) �	m�   (since �(	) is an even function) 

     = �
m� 	 �	m� = �

m ^��
� _�

m
  

     = �
m ^m�

� _ = �. 

W = �

m � 	 cos e	  �	m�   

     = �
m ^� OPQ W�

W _�
m − �

Wm � sin e	  �	m�   
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     = �
mW� @cos e�A�m  

    = �
mW� @(−1)W − 1A  

       = � − 5
mW�  2� e 2¿ ¾��

0           2� e 2¿ S|Se  
∴ �(	) = m

� − m
5 ∑ 3opO W�

W� 4 where e is odd. 
∴ �(	) = m

� − 5
m ^opO �

�� + opO 9�
9� + opO `�

`� + ⋯ _  
 

Example 25 

Find the Fourier (i) cosine series (ii) sine series for the function �(	) = � −	 in (0, �). 
Solution 

(i) Let �(	) = � − 	. 
The Fourier cosine series of �(	) is given by  �(	) = 
� + ∑ 
W cos e	RWB�   


� = �
m � (� − 	) �	m�m   

      = �
m ^�	 − ��

� _�
m
  

      = �
m 3��

� 4 = �. 

W = �

m � (� − 	) cos e	  �	m�   

     = �
m ^M(� − 	) OPQ W�

W N�
m + �

W � sin e	  �	W� _  
     = �

m ^− opO W�
W� _�

m = �
mW� @(−1)W�� + 1A  

        = � 5
mW�   �ℎSe e 2¿ ¾��

0       �ℎSe e 2¿ S|Se  ∴ � − 	 = m
� + 5

m∑ opO(�W��)�
(�W��)�RWB�   

(ii) Let �(	) = � − 	 . The Fourier sine series of �(	)  is given by ∑ dW sin e	RWB� . 

dW = �
m � (� − 	) sin e	  �	m�   

      = �
m @M(m��) opO W�

W N�
m − �

W � cos e	  �	m�   

      = �
m 3m

W4 − �
mW� @sin e	A�m = �

W  ∴ � − 	 = 2∑ OPQ W�
WRWB�   
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Example 26 

If �(	) = 	  is defined in –  < 	 <   with period 2  find the Fourier 
expansion of �(	) 
Solution 

Since �(	) is an odd function 
W = 0 for all e ≥ 0. 
Now, dW = �

C � 	 sin 3Wm�
C 4  �	C�  

    = �
C ^− C�

Wm cos 3Wm�
C 4 + C�

W�m� sin 3Wm�
C 4_�

C
  

    = �
C 3− C� opO Wm

Wm 4 = − �C(��)¯
Wm   

    = �(��)¯�8C
Wm  . 

∴ The Fourier series is 	 = �
m∑ ^(��)¯�8C

W sin 3Wm�
C 4_RWB�  

 

Example 27 

Find the half range Fourier sine series of �(	) = 	 in 0 < 	 < 2. 
Solution 

The Fourier sine series for �(	) in (0, 2) is given by  
�(	) = ∑ dW sin 3Wm�

� 4RWB�  where dW = �
�� �(	) sin 3Wm�

� 4 �	��  

         = � 	 sin 3Wm�
� 4 �	��   

         = ý− �� opO3¯;Z� 4
Wm + 5 OPQ3¯;Z� 4

W�m� þ
�
�
  

         = 3− 5 opO Wm
Wm 4 = − 5

m ^(��)¯
W _  

∴ The Fourier sine series for �(	) = 	 is given by 
	 = − 5

m∑ ^(��)¯
W sin 3Wm�

� 4_RWB� . 

 

Exercise 5 

1. Find the Fourier series to represent �(	) in (−�, �) 
    (i) �(	) = M−1         2e − � < 	 ≤ 01             2e  0 ≤ 	 ≤ � 
    (ii) �(	) = M 1         2e − � < 	 ≤ 0−2             2e  0 < 	 ≤ � 
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2. If �(	) = M0         2e − � < 	 ≤ 0	             2e  0 < 	 < �  prove that its Fourier series is �(	) =
m
5 − �

m ^opO �
�� + opO 9�

9� + ⋯ _ + ^OPQ �
� + OPQ ��

� + ⋯ _ . Hence prove that m�
� =∑ �

(�W��)�RWB�  . 

3. Expand the function u = cos 2	 in a series of sines in the interval (0, �). 
Answers 

1. (i) �(	) = 5
m ^OPQ �

� + OPQ 9�
9 + OPQ `�

` + ⋯ _ 
    (ii) − �

� − a
m∑ OPQ(�W��)�

�W��RWB�  

3. − 5
m ^OPQ �

���� + 9 OPQ 9�
���9� + ` OPQ `�

���`� + ⋯ _ 


