

ISSN: 2454-6127(Online) Journal homepage: http://www.skyfox.co

Determining the Performance of Some Soybean Genotypes in Middle Black Sea Transitional Zone

Ahmet KINAY^{*1⁰}Mehtap SARIOGLAN^{1⁰} Erdem KARAKOC^{1⁰}

To cite this article	: Kinay, A., Sarioglan, M., & Karakoc, E. (2020). Determining the Performance of Some Soybean Genotypes												
	in	Middle	Black	Sea	Transitional	Zone.	Int	J	Agric	Life	Sci,	6(3),	293-299.
	doi:	10.22573	/spg.ijals.	020.s12	22000100.								
To link to this article	: https://doi.org/10.22573/spg.ijals.020.s122000100												
Copyright	: © 2020 Kinay, A., et al. This is an Open Access article distributed under the terms of the Creative												
	Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),which permits						permits						
	unre	estricted u	use, distri	bution,	and reprodu	ction in a	ny meo	dium	, provide	ed the O	Drigina	l work is	s properly
	cited	d.											
Data Availability Statement	: All relevant data are within the paper and its Supporting Information files.												
Funding	: The author(s) received no specific funding for this work.												
Competing Interests	: The authors have declared that no competing interests exist.												

© 2020 The Author(s). Published by Skyfox Publishing Group

Published online: 30 Sep 2020.

Submit your article to this journal $\ \ensuremath{\mathbb{C}}$

View CrossMark data

View related articles 🗷

Open Access

RESEARCH ARTICLE

Determining the Performance of Some Soybean Genotypes in Middle Black Sea Transitional Zone

Ahmet KINAY^{*1} Mehtap SARIOGLAN¹ Erdem KARAKOC¹

¹Tokat Gaziosmanpasa University, Faculty of Agriculture, Department of Field Crops, Tokat, Turkey *Author to whom correspondence should be addressed; E-Mail: <u>ahmet.kinay@gop.edu.tr</u> Received: June 2020 / Accepted: July 2020 / Published: Sep 2020

Abstract: This research was carried out in 2017 and 2018 to determine the agronomic and chemical quality characteristics of 18 soybean genotypes including seven advanced lines and eleven cultivars under Tokat-Kazova conditions. The feasibility of soybean production in the region has been determined to create a database that may contribute to the oilseed deficit in the future. The phenological (germination, first flowering and physiological maturity) and morphological characteristics (plant height, number of side branches, first pod height, number of pods per plant, number of grains per pod, 1000-seed weight, seed yield, oil ratio, oil yield, protein ratio and yield) were examined in the study. All properties except number of grains per pod were significantly (p<0.01 and p<0.05) different between genotypes. The seed yield varied between 1.82 and 3.00 t ha⁻¹, oil ratio was between 19.73 and 25.20% and protein ratio was between 30.39 and 43.44%. The results of the study revealed that genotypes of 1, 2, 3 and 9 for the seed yield, 1, 7 and 8 for the oil yield and 1, 2 and 9 for the protein yield can be promising under Tokat-Kazova conditions. However, more efficient cultivars are needed due to the insufficient performances of the genotypes investigated. **Keywords:** *Glycine max.*(L) Merrill, Oil Yield, Protein Yield, Seed Yield

1. INTRODUCTION

Soybean (*Glycine max* (L.) Merr.) is an important oilseed crop in the world. Soybean is rich in nutritional value due to high protein and oil content, in addition to the functional composition such as isoflavones (Singh et al., 2010). Soybean ranks the first (352 million tons) in world oilseed production. Oilseed production in Turkey is approximately 3 million tons, only 4.6% comes from soybean. These values indicate that soybean production in Turkey is not sufficient. Turkey, that is a net soybean importer, imported about 2.3 million tons of soybeans in 2017 and paid 948 million dollars for soybean (FAO, 2017). The amount of soybean import will increase every year with the growth of livestock sector. The import of soybean can only be reduced by the increase in soybean production. Introducing the genotypes suitable for different ecological regions of Turkey is necessary to increase the soybean production (llker et al., 2018).

Soybean can be grown in Turkey as the main crop and the second crop. However, the majority of soybean is produced in Adana and Samsun provinces, which meets only 11% of the soybean demand (FAO, 2017). Therefore, the expansion of soybean cultivation is necessary to meet the soybean demand of Turkey.

Adaptation studies on soybean cultivation have been conducted in different provinces of Turkey and are still continuing. The highest seed yield in a study carried out using 14 soybean varieties in Aksaray province as the main crop was obtained in Ataem 7 (4.98 t ha⁻¹) cultivar and the lowest yield was obtained in Nova (2.81 t ha⁻¹) cultivar (Mert & Ilker, 2016). Another study Yildirim & Ilker (2018) was carried out in the Aegean Region under the second crop conditions using 10 advanced level (F9) lines and 4 control varieties breed by the research institutes of the General Directorate of Agricultural Research and Policies. The results indicated that Kana (3.99 t ha⁻¹), Batem 317 (3.89 t ha⁻¹) and Kama (3.67 t ha⁻¹) cultivars were promising candidates with high yield, and Bravo (103.7 days), Ataem-7 (104.7 days), Arisoy (106.25 days) and Kasm 03 (106.5 days) lines had potential for earliness as the second crop in the Aegean Region. In another study conducted in Sanliurfa province using 20 soybean varieties, the plant height varied between 61.23 and 103.10 cm, The first pod height was ranged from 1.80 to 9.03 cm, the number of branches per plant was between 2.00 and 5.07, the number of pods per plant was between 78.37 and 215.8, the number of seeds per pod was between 2.3 and 3.1, yield was between 2.18 and 4.13 t ha⁻¹, 100-seed weight ranged between 12.77 and 17.69 g, protein ratio was between 37.7 and 40.4%, oil ratio was between 14.87 and 19.1% and oil yield was between 0.39 0.73 t ha⁻¹). The results also revealed that these genotypes have good adaptation to the regions in which the experiments conducted.

The aim of this study was to determine the performances of some soybean genotypes in Tokat-Kazova ecological conditions. The findings on feasibility of soybean production in the region will contribute to decrease in oilseed deficit of the country.

2. MATERIAL AND METHODS

The research was carried out in Agricultural Research Center of Tokat Gaziosmanpasa University in 2017 and 2018. Experimental lay out was randomized block design with three replications. Total of 18 soybean genotypes, including seven lines (TRE-S07-03-531210T, TRE-S07-03-542120T, TRE-S07-05-111110T, TRE-S07-06-633210T and TRE-S08-03-111110T) and eleven cultivars (Traksoy, Türksoy, Yesilsoy, Nazlican, Adasoy, Cinsoy, Cetinbey, Atakisi, Arisoy, Umut-2002 and Mersoy) were used as the main crop.

Average temperature values during the experiment were similar to the long- term averages, however, the temperatures in July, August and September were higher compared to the long-term values. Total precipitation in 2018 was similar to the long-term averages, while precipitation in 2017 was higher than the long-term average precipitation. High temperatures caused a decrease in the average humidity during the experiment (Turkish State Meteorological Service, 2019).

International Journal of Agricultural and Life Sciences- IJALS (2020), Volume 6 (3) pp.293-299

http://dx.doi.org/10.22573/spg.ijals.020.s122000100

Available online at http://www.skyfox.co

Soil samples of the experimental field were collected from three different points at 30 cm depth (Table 2), and some of physical and chemical characteristics were determined. Soil in experimental field was clayey loam, strongly alkaline, poor in organic matter content, very calcareous, low in plant available phosphorus and high in potassium concentrations (Kacar, 2012).

The seeds were inoculated with the bacteria (Rhizobium japonicum) during the preparation stage of the sowing. Inoculated seeds were sown to 5 cm depth by hand on April 28, 2017 and April 26, 2018, at 60 cm inter row and 5 cm intra row spacing. The length of rows was 5 m and each plot had 3 rows. The whole experimental field was sown without leaving any space between the plots, considering the first and last rows of the blocks as side effect. Fertilizers were applied before the planting and application rate of fertilizer was 40 kg N ha⁻¹ and 88 kg P ha⁻¹. Since the formation of nodules was insufficient in the first flowering period, top fertilizers were applied in two (90 kg N ha⁻¹) different times. The plots were irrigated using drip irrigation system, considering the critical periods of soybean. Weed and pest controls were performed by mechanically and chemically. The plants were harvested at full maturity period by hand and blended. Necessary observations were conducted on 10 plants randomly selected from each plot in the harvest maturity period (Cevik, 2006; Günes, 2006; Unal, 2007).

The data obtained in the study were analyzed according to the experimental design by analysis of variance (ANOVA) using the MSTAT-C software. The means were grouped using Duncan's multiple range test (P<0.05) in case ANOVA denoted significant differences (Wang et al., 2013). Since the variations were homogeneous, years were assessed in together. Principal component analysis of the agronomic properties was carried out with Minitab[®] v17 (Minitab Inc., State College, PA, USA) software.

3. RESULTS AND DISCUSSION

The genotypes germinated within 12 to 17 days and the average germination period was 14 days. The change in the maturity group did not have a significant effect on the germination period. Flowering was completed in 61 to 76 days (mean 69 days), physiological maturation was between 118 and 174 days (mean 137 days). The earliest maturing genotypes were the advanced level lines. Türksoy, Yesilsoy, Nazlican and Adasoy cultivars showed late maturing characteristics, while Cinsoy was moderately late maturing.

Morphological characteristics of a soybean variety may change depending on growing conditions, cultivar, sowing time and sowing density (Onat et al 2017; Gaweda et al 2017). The plant height varied between 86.25 (TRE-S07-08-633210T) and 133.35 cm (Adasoy) (Table 4). The most branching genotypes were Umut-2002 (3.64) and Cinsoy (3.66) while the least branching genotypes were TRE-S07-07-622110T and TRE-S07-08-421210T. The lowest first pod height which is important for the harvest (Gizlenci et al., 2005; Bakal et al 2016) was obtained in TRE-S07-03-542120T, (9.71 cm), TRE-S07-05-11110T, (9.61 cm) and TRE-S08-03-11110T (9.61cm) genotypes, while the highest value was recorded in Nazlican (17.75 cm) cultivar.

The number of seeds per pod (2.68-3.42) which affect the seed yield differed among the genotypes and lines, however the difference was not statistically significant. The highest number of pods per plant was obtained in Yesilsoy genotype while the least number of pods per plant was obtained in TRE-S07-07-622110T (36.69) genotype. One thousand seeds weight, which is another important trait that contributing to the yield ranged from 182.46 g (TRE-S07-08-633210T) to 132.80 g (Atakisi). The highest seed yield, with the influence of the number of pods and thousand seeds weight, was recorded in Mersoy (2.87 t ha⁻¹) genotype and three advanced level lines (TRE-S07-03-531210T, 2.96 t ha⁻¹; TRE-S07-03-542120T, 3.00 t ha⁻¹ and TRE-S07-05-111110T, 2.85 t ha⁻¹). Yesilsoy and Adasoy genotypes had the lowest seed yield values in the region. The yield values decreased with the decrease in the one thousand seeds weight because Yesilsoy and Adasoy genotypes were in the late maturing class and could not fill their seeds completely (Liu et al., 2017).

Soybean is an important food and feed source due to its high protein content and thus the most produced oilseed type of the world (Liu et al 2017; Tsindi et al 2019). The genotypes with the highest oil ratio were TRE-S07-03-531210T, TRE-S08-03-111110T and Traksoy. The same genotypes were also included in the highest seed yield statistical group, thus had the highest oil yields (0.72 t ha⁻¹, 0.68 t ha⁻¹ and 0.70 t ha⁻¹, respectively). Although protein content of Adasoy (43.44%) and Yesilsoy (39.23%) varieties were high, the protein yields of TRE-S07-03-531210T, TRE-S07-03-542120T and Mersoy genotypes were the highest. The protein ratios of these genotypes were ranked statistically in the middle, however, their high seed yields per hectare caused the high protein yields per hectare (Tsindi et al., 2019).

The first four PCs with Eigen value higher than 1.0 explained 83% of the variation among 11 properties examined. The effect of seed yield, oil yield and protein yield which are important parameters of the first PC, was 46% (Abebe et al., 2010). The effect of the second PC explained 16% of the total variation. The contributions of number of seeds and oil ratio were positive while thousand seeds weight and protein ratio negatively contributed to the PC2. The third PC explained 11% of the total variation and plant height and number of branches were the main contributors of the PC3. The number of branches, number of pods per plant, oil ratio and number of seeds per pod were the important traits of PC4 which explained the 11% of the total variation in data set (Table 6). The results indicated that approximately half of the variation was originated from the first PC. Seed yield, oil yield and protein yield were the most contributing morphological traits of the PC1 to the total variation (Figure 1).

The examining the effects of morphological properties indicated that plant height, the first pod height and the number of branches per plant had a relationship with each other. Similarly, seed yield, oil yield and protein yield had a close relationship with each other (Figure 1).

Eighteen different genotypes comprised of I. II. III. and IV. maturity group. Comparison of genotypes for 11 traits revealed that the genotypes 1, 2, 6, 8, 11, 13 and 17 were highly sensitive to different environments (Yüksel & Akcura, 2012). Genotypes 1, 7 and 8 were determined superior in terms of oil content, and genotypes 11 and 13 in terms of protein ratio (Figure 2).

4. CONCLUSIONS

The main reasons of growing soybean are to produce oil and protein. The consumer prefers to use soybean and their products rich in oil and protein (Nonoy et al., 2017). However, the farmers want to grow the genotype that yields higher in per unit area. Considering the aforementioned expectations, the results of current study revealed that TRE-S07-03-531210T, TRE-S07-03-542120T, TRE-S07-05-111110T and Mersoy genotypes can be grown in the region to obtain sufficient seed, oil and protein yields. Since sunflower and corn can be grown in the same fields where soybean can be grown, 3.00 t ha⁻¹ of seed yield for soybean decreases the competing chance of soybean with other crops. Average corn yield is between 10 and 12 t ha⁻¹ and sunflower yield is between 3 and 3.5 t ha⁻¹. Market value of soybean is 2300 TL per ton corn is 1100 TL and sunflower is 2500 TL (TSI, 2019). Production costs of all three crops are close to each

International Journal of Agricultural and Life Sciences- IJALS (2020), Volume 6 (3) pp.293-299

http://dx.doi.org/10.22573/spg.ijals.020.s122000100

Available online at http://www.skyfox.co

other, therefore the income to be obtained can easily be compared. The income of corn is between 11000 and 14400 TL ha⁻¹, sunflower is between 7500 and 8750 TL ha⁻¹, and soybean is 6900 TL ha⁻¹. Therefore, the probability of expanding the soybean cultivation in the region seems low under these circumstances. New cultivars at least with 4 t ha⁻¹ seed yield and adopted to the region need to be breed.

AUTHOR CONTRIBUTIONS

Study activities were supervised by AK, field and laboratory works have been conducted by all researchers. Manuscript has been prepared by equal contribution of all authors

REFERENCES

- 1. Abebe T.D., Bauer A. M., & Leon J. (2010). Morphological diversity of Ethiopian barleys (*Hordeum vulgare* L.) in relation to geographic regions and altitudes. *Hereditas* 147:154-164
- 2. Bakal H., Arioğlu H., Güllüoğlu L., Kurt C., & Onat B. (2016). The determination of some important agronomical and quality properties of soybean (*Glycine max* (L.) Merrill) varieties in double cropped conditions. *Journal of Field Crops Central Research Institute* 25(2): 125-130
- 3. Cevik M. (2006). Effect of the sowing depth on the yield, yield components and quality at dry bean varieties. Selcuk University, Turkey
- 4. Ertas A. (2017). Determination of yield and yield components of some soybean (*Glycine max*. (L.) Merrill) varieties under Sanliurfa ecological conditions. Harran University, Turkey
- 5. Gaweda D., Haliniarz M., Cierpiala R., & Klüsek I. (2017). Yield, weed infestation and seed quality of soybean (*Glycine max* (L.) Merrill) under different tillage systems. *Journal of Agricultural Sciences*. 23: 268-275
- Gizlenci S., Ustün A., Acar M., Dok M. and Aygün Y. (2005). Determination of the most suitable optimum sowing time for middle earlier and earlier soybean cultivars in the Middle Blacksea Coastal Region. In: *Proceedings of the Turkey VI. Field Crops Congress*, 5-9 September, Antalya, pp. 381-386
- 7. Günes A. (2006). Effects of different nitrogen doses and application time on yield and yield components of soybean (*Glycine max* (L.) Merrill) cultivated as second crop. Harran University, Turkey
- 8. Ilker E., Kocaturk M., Kadiroglu A., Altinbas M., Yildirim A., Ozturk G., & Yildiz H. (2018). Stability analyses for double cropping in soybean (*Glycine max* (L.) Merrill). *Turkish Journal of Field Crops* 23(2): 80-84
- 9. Internet1: Food and Agricultural Organizations (2017). Food and Agriculture Organization, provides free access to food and agriculture data. December, 30, 2019 from http://www.fao.org/faostat/en/#data/QC
- 10. Internet2: Turkish Statistical Institute (2019). Turkey oilseeds production. December, 30, 2019 from http://www.tuik.gov.tr/UstMenu.do?metod=temelist
- 11. Kacar B. (2012). Analyses of Soil. Nobel Publishing. Ankara, Turkey.
- 12. Liu X., Wu J A., Ren H., Qi Y., Li C., Cao J., Zhang X., Zhang Z., Cai Z., & Gai J. (2017). Genetic variation of world soybean maturity date and geographic distribution of maturity groups. *Breed Sci.* 67(3): 221-232
- 13. Mert M., & Ilker E. (2016). Studies on adaptation abilities of some soybean (*Glycine max* (L.) Merrill) varieties and lines under main crop conditions of Aksaray region. *Journal of Field Crops Central Research Institute* 25(2): 176-181
- 14. Nonoy B.B., Justin E.A., Michael B.K., Robert M.S., James E.S., George L.G., & Aaron J.L. (2017). Dissecting the genetic basis of local adaptation in soybean. *Scientific reports 7*, Article number: 17195
- 15. Onat B., Bakal H., Gulluoglu L., & Arioglu H. (2017). The effects of high temperature at the growing period on yield and yield components of soybean (*Glycine max* (L.) Merrill) varieties. *Turkish Journal of Field Crops* 22(2): 178-186
- 16. Singh G., & Shivakumar B.G. (2010). The role of soybean in agriculture. In: B Singh, *The Soybean: Botany, Production and Uses*, CAB International, UK, pp. 24–47
- 17. Tsindi A., Kawuki R., & Tukamuhabwa P. (2019). Adaptation and stability of vegetable soybean genotypes in Uganda. African Crop Science Journal 27(2): 267-280
- 18. Unal I. (2007). Determination of some agricultural characteristics of the soybean (*Glycine max* (L.) Merrill) lines obtained using the hybridization method. Selcuk University, Turkey
- 19. Wang X., Feng G., Deng Z., Wang W., & Jin L. (2013). Microsporogenesis and microgametogenesis of male-sterile mutant ms1 in alfalfa. *Crop Science* 53: 679-687.

© 2020 The Author(s). Published by Skyfox Publishing Group

Table 1. Climate data of the study area for long-term (1960-2016) and during the experiment

Parameters	Year	Months								
		April	May	June	July	August	September	October		
Total precipitation (mm)	1960-2016	54.3	58.9	39.0	12.1	6.7	18.6	38.7		
	2017	48.2	80.6	76.5	5.4	4.2	29.6	31.9		
	2018	45.5	59.1	41.5	7.2	3.9	14.2	39.6		
Mean temperature (C ^o)	1960-2016	12.4	16.2	19.5	22.0	22.2	18.7	13.6		
	2017	12.3	16.5	20.7	25.1	25.5	22.9	13.7		
	2018	14.8	18.5	22.0	24.2	23.7	20.4	15.7		
Mean humidity (%)	1960-2016	59.0	61.3	59.7	57.4	57.7	59.5	65.3		
	2017	51.6	64.8	64.6	49.8	51.6	43.7	57.4		
	2018	46.4	60.9	54.9	52.7	55.8	60.1	69.3		

Turkish State Meteorological Service

Table 2. Some of physical and chemical characteristics of experimental field

Property	2017	2018
Texture	Clayey loam	Clayey loam
рН	8.1- strongly alkali	7.99- strongly alkaline
Organic matter (%)	1.00-poor	1.13- poor
Lime (%)	20.6- very calcareous	18.25- very calcareous
Phosphorus (P ₂ O ₅ , kg da ⁻¹)	5.68-poor	5.13-poor
Potassium (K ₂ O, kg da ⁻¹)	157.7-high	169.8-high
Electrical conductivity (EC, dS m ⁻¹)	0.22-non saline	0.25- non saline

Table 3. Soybean genotypes germination, flowering and physiological maturity days

No	Genotypes	Germination (day)	Flowering (day)	Physiological maturity (day)
1	TRE-S07-03-531210T	12	61	118
2	TRE-S07-03-542120T	12	61	118
3	TRE-SO7-05-111110T	12	61	118
4	TRE-S07-07-622110T	17	61	118
5	TRE-S07-08-421210T	14	61	118
6	TRE-S07-08-633210T	17	61	118
7	TRE-S08-03-111110T	12	61	118
8	Traksoy	12	71	134
9	Mersoy	12	76	151
10	Turksoy	17	76	163
11	Yesilsoy	17	76	163
12	Nazlican	12	76	163
13	Adasoy	17	76	174
14	Cinsoy	12	76	137
15	Umut-2002	12	76	151
16	Cetinbey	12	71	129
17	Atakisi	14	73	134
18	Arisoy	17	73	134
Mea	'n	14	69	137

© 2020 The Author(s). Published by Skyfox Publishing Group.

Available online at http://www.skyfox.co

	Genotypes	Plant	Number of	First pod	Number of	Number of	1000-seed
No		height**	branches**	height*	pods per plant**	seeds per pod ^{ns}	weight**
1	TRE-S07-03-531210T	107.95cd	2.40b-e	11.79abc	47.75e	2.78	149.80cde
2	TRE-S07-03-542120T	87.49f	1.98de	9.71c	45.41ef	2.75	163.14b
3	TRE-SO7-05-111110T	86.82f	2.03cde	9.61c	47.90e	2.87	159.69bc
4	TRE-S07-07-622110T	114.93bc	1.80e	14.00abc	36.69g	2.80	164.79b
5	TRE-S07-08-421210T	111.14bcd	1.75e	15.20abc	39.55fg	3.12	133.29f
6	TRE-S07-08-633210T	86.65f	2.43b-e	10.22bc	40.49fg	2.82	182.46a
7	TRE-S08-03-111110T	103.63cde	2.11cde	9.61c	58.00bc	2.88	139.85ef
8	Traksoy	116.30bc	2.61a-e	11.84abc	51.96cde	2.97	141.09ef
9	Mersoy	110.40bcd	2.61a-e	11.37abc	50.06de	2.92	145.48de
10	Turksoy	130.53a	2.00cde	18.20a	45.58ef	2.68	147.87de
11	Yesilsoy	129.57a	2.76а-е	14.92abc	66.69a	2.77	138.94ef
12	Nazlican	113.15bc	3.41ab	17.77a	56.13bcd	2.82	154.77bcd
13	Adasoy	133.35a	2.37b-e	13.89abc	60.01ab	2.68	140.51ef
14	Cinsoy	98.25def	3.66a	17.36ab	61.18ab	2.85	138.63ef
15	Umut-2002	123.18ab	3.64a	14.18abc	50.48de	2.83	155.95bcd
16	Cetinbey	93.88ef	2.97a-d	13.18abc	50.01de	2.90	161.10b
17	Atakisi	112.65bc	3.18ab	15.38abc	48.38e	3.42	132.80f
18	Arisoy	113.03bc	3.05abc	14.13abc	51.88cde	2.95	138.76ef
Mea	'n	109.61	2.60	13.46	50.01	2.88	149.11

Table 4. Plant height, number of branches, the first pod height, number of pods per plant, number of seeds per pod and 1000-seed weight of sovbean genotypes

*, ** Different letters in a column indicate significant differences among genotypes and lines at p<0.01 and p<0.05 level, respectively, ns: non-significant

Table 5. Seed yield, oil ratio, oil yield, protein ratio and protein yield of soybean genotypes

No	Genotypes	Seed yield (t/ha)**	Oil ratio (%)**	Oil yield (t/ha)**	Protein ratio (%)**	Protein yield (t/ha)**
1	TRE-S07-03-531210T	2.96ab	24.35ab	0.72a	33.98def	1.01ab
2	TRE-S07-03-542120T	3.00a	21.21d-g	0.64a-d	35.16c-f	1.07a
3	TRE-SO7-05-111110T	2.85abc	21.44d-g	0.62а-е	32.93f	0.94a-d
4	TRE-S07-07-622110T	2.68a-d	21.40d-g	0.58a-f	35.56cde	0.96abc
5	TRE-S07-08-421210T	2.57а-е	20.30f-g	0.53def	33.30ef	0.86b-f
6	TRE-S07-08-633210T	2.64а-е	19.73g	0.53def	35.44cde	0.93а-е
7	TRE-S08-03-111110T	2.78a-d	24.30ab	0.68abc	32.94f	0.92a-e
8	Traksoy	2.76a-d	25.20a	0.70ab	34.00def	0.94a-d
9	Mersoy	2.87abc	20.66efg	0.59a-f	35.41cde	1.03ab
10	Turksoy	2.53a-f	22.87bcd	0.58a-f	33.76def	0.85b-f
11	Yesilsoy	1.82h	19.73g	0.36g	39.23b	0.71f-g
12	Nazlican	2.03fgh	21.22d-g	0.44f-g	37.32bc	0.76c-g
13	Adasoy	1.89gh	19.57g	0.37g	43.44a	0.60g
14	Cinsoy	2.34c-g	20.21fg	0.48efg	35.64cde	0.83b-f
15	Umut-2002	2.44b-f	22.74bcd	0.56b-f	35.67cde	0.84b-f
16	Cetinbey	2.30d-h	23.55abc	0.54c-f	30.39g	0.73efg
17	Atakisi	2.14e-h	21.81c-f	0.47efg	35.15c-f	0.74d-g
18	Arisoy	2.57а-е	22.43b-e	0.58a-f	35.94cd	0.92a-e
Mea	n	2.51	21.82	0.55	35.29	0.87

** Different letters in a column indicate significant differences among genotypes and lines at **p<0.01

© 2020 The Author(s). Published by Skyfox Publishing Group.

ļ	Table 6. Eigenvectors and eigenvalues of the first four princ	ipal components (PC) of 9 quantitative traits of 18 soybean genotype

Traits	Eigenvectors					
	PC1	PC2	PC3	PC4		
Plant height	-0.28	0.17	-0.63	-0.03		
Number of branch	-0.22	0.25	0.44	0.45		
First pod height	-0.31	0.22	-0.09	-0.12		
Number of pod per plant	-0.31	0.00	0.10	0.49		
Number of grain per pod	0.00	0.52	0.39	-0.49		
Thousand seed weight	0.18	-0.50	0.27	0.18		
Seed yield	0.43	0.00	-0.11	-0.02		
Oil ratio	0.22	0.46	-0.22	0.47		
Oil yield	0.41	0.20	-0.19	0.20		
Protein content	-0.32	-0.32	-0.26	-0.02		
Protein yield	0.39	-0.05	-0.09	-0.02		
Eigenvalues	5.07	1.79	1.21	1.03		
% of total variance explained	46.10	16.30	11.00	9.40		
% cumulative variance explained	46.10	62.30	73.30	82.70		

Figure 1. Biplot graph with dispersion of the 18 soybean genotypes for the traits

Figure 2. Biplot of PCA1 and PCA2 scores obtained from yield and yield components data of 18 genotypes

How to cite this article

Kinay, A., Sarioglan, M., & Karakoc, E. (2020). Determining the Performance of Some Soybean Genotypes in Middle Black Sea Transitional Zone. Int J Agric Life Sci, 6(3), 293-299. doi: 10.22573/spg.ijals.020.s122000100.

CONFLICTS OF INTEREST

"The authors declare no conflict of interest".

© 2020 by the authors; Published by SKY FOX Publishing Group, Tamilnadu, India. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (<u>http://creativecommons.org/licenses/by/4.0/</u>).