Metabolites of Lactic Acid Bacteria (LAB): Production, Formulation and Potential applications in Food Industries

Author : Bilna Joseph1#, Bhavadharani M2#, K. Srinivasan2, N. Baskaran2, S. Vignesh2*
Mail Id : vignesh@iifpt.edu.in

Abstract

In nature, lactic acid bacteria (LAB) are the predominant microflora of milk and its products. LAB is a diverse group of phylogenetically related microbes that produce lactic acid as the primary byproduct of carbohydrate fermentation. The fermented food sector extensively uses LAB, which can ferment carbohydrates to generate lactic acid. LAB’s microbial metabolic characteristics have drawn more attention due to their significant function in the food industry and their probiotic properties. LAB can decompose food macromolecules, break down indigestible polysaccharides, and generate a wide range of products during metabolism, including exopolysaccharides, bacteriocins, short-chain fatty acids, vitamins and amines. LAB is employed to enhance the flavour of fermented foods, boost food nutrition, lessen dangerous chemicals, lengthen shelf life, and be utilized as probiotics to improve bodily wellness. The name “probiotics” or “pro-life” was coined due to LAB’s ability to prevent and treat various illnesses. Since LAB can maintain food stability and safety for decades, it has been thoroughly investigated for bio-preservation. Numerous genera found in LAB produce metabolites that have been approved for use in food by various food regulatory organizations.  LAB are considered safe organisms with the designation of GRAS (generally recognized as safe) and have relatively basic metabolic pathways that are fairly amenable to changes. The recent studies of metabolites produced from LAB, their potential and their use in food applications are discussed.

Keywords

Lactic acid bacteria Primary metabolites Secondary metabolites Extraction methods Biological activity Food industry applications

References

1. Al Kassaa, I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014). Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins. Probiotics and Antimicrobial Proteins, 6(3–4), 177–185. https://doi.org/10.1007/s12602-014-9162-6


2. Ali, W. Ben, Ayed, A. Ben, Turbé-Doan, A., Bertrand, E., Mathieu, Y., Faulds, C. B., Lomascolo, A., Sciara, G., Record, E., & Mechichi, T. (2020). Enzyme properties of a laccase obtained from the transcriptome of the marine-derived fungus stemphylium lucomagnoense. International Journal of Molecular Sciences, 21(21), 1–16. https://doi.org/10.3390/ijms21218402


3. Axelsson, L. T., Chung, T. C., Dobrogosz, W. J., & Lindgren, S. E. (1989). Production of a Broad Spectrum Antimicrobial Substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2(2), 131–136. https://doi.org/10.3109/08910608909140210


4. Baankreis, R., & Exterkate, F. A. (1991). Characterisation of a Peptidase from Lactococcus lactis ssp* cremoris HP that Hydrolyses Di- and Tripeptides Containing Proline or Hydrophobic Residues as the Aminoterminal Amino Acid. Systematic and Applied Microbiology, 14(4), 317–323. https://doi.org/10.1016/S0723-2020(11)80305-X


5. Barbieri, F., Montanari, C., Gardini, F., & Tabanelli, G. (2019). Biogenic amine production by lactic acid bacteria: A review. In Foods (Vol. 8, Issue 1). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods8010017


6. Beasley, S. S., & Saris, P. E. J. (2004). Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk. Applied and Environmental Microbiology, 70(8), 5051–5053. https://doi.org/10.1128/AEM.70.8.5051-5053.2004


7. Bolhuis, H., Van Veen, H. W., Molenaar, D., Poolman, B., Driessen, A. J. M., & Konings, W. N. (1996). Multidrug resistance in Lactococcus lactis: Evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO Journal, 15(16), 4239–4245. https://doi.org/10.1002/j.1460-2075.1996.tb00798.x


8. Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030


9. Bover-Cid, S., & Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53(1), 33–41. https://doi.org/10.1016/S0168-1605(99)00152-X


10. Brenna, O., & Bianchi, E. (1994). Immobilised laccase for phenolic removal in must and wine. Biotechnology Letters, 16(1), 35–40. https://doi.org/10.1007/BF01022620


11. Britton, R. A. (2017). Lactobacillus reuteri. In The Microbiota in Gastrointestinal Pathophysiology (pp. 89–97). Elsevier. https://doi.org/10.1016/B978-0-12-804024-9.00008-2


12. Bron, P. A., & Kleerebezem, M. (2011). Engineering lactic acid bacteria for increased industrial functionality. Bioengineered Bugs, 2(2), 80–87. https://doi.org/10.4161/bbug.2.2.13910


13. Brosnan, B., Coffey, A., Arendt, E. K., & Furey, A. (2012). Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Analytical and Bioanalytical Chemistry, 403(10), 2983–2995. https://doi.org/10.1007/s00216-012-5955-1


14. Bruinenberg, P. G., Vos, P., & De Vos, W. M. (1992). Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk. Applied and Environmental Microbiology, 58(1), 78–84. https://doi.org/10.1128/aem.58.1.78-84.1992


15. Bruno-Bárcena, J. M., Andrus, J. M., Libby, S. L., Klaenhammer, T. R., & Hassan, H. M. (2004). Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Applied and Environmental Microbiology, 70(8), 4702–4710. https://doi.org/10.1128/AEM.70.8.4702-4710.2004


16. Callanan, M. J., & Ross, R. P. (2004a). Starter Cultures: Genetics (pp. 149–161). https://doi.org/10.1016/S1874-558X(04)80066-6


17. Callanan, M. J., & Ross, R. P. (2004b). Starter Cultures: Genetics (pp. 149–161). https://doi.org/10.1016/S1874-558X(04)80066-6


18. Cesselin, B., Henry, C., Gruss, A., Gloux, K., & Gaudu, P. (2021). Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis. Applied and Environmental Microbiology, 87(24). https://doi.org/10.1128/AEM.01079-21


19. Chauhan, P. S., Goradia, B., & Saxena, A. (2017). Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech, 7(5), 323. https://doi.org/10.1007/s13205-017-0955-7


20. Chung, T. C., Axelsson, L., Lindgren, S. E., & Dobrogosz, W. J. (1989). In Vitro Studies on Reuterin Synthesis by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2(2), 137–144. https://doi.org/10.3109/08910608909140211


21. de Souza, E. L., de Oliveira, K. Á., & de Oliveira, M. E. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Current Opinion in Food Science, 49, 100981. https://doi.org/10.1016/j.cofs.2022.100981


22. De Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. In International Dairy Journal (Vol. 11).


23. De Vuyst, L., & Vandamme, E. J. (1994). Antimicrobial Potential of Lactic Acid Bacteria. In Bacteriocins of Lactic Acid Bacteria (pp. 91–142). Springer US. https://doi.org/10.1007/978-1-4615-2668-1_3


24. del Carmen, S., de Moreno de LeBlanc, A., Levit, R., Azevedo, V., Langella, P., Bermúdez-Humarán, L. G., & LeBlanc, J. G. (2017). Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. International Immunopharmacology, 42, 122–129. https://doi.org/10.1016/j.intimp.2016.11.017


25. del Carmen, S., de Moreno de LeBlanc, A., Martin, R., Chain, F., Langella, P., Bermúdez-Humarán, L. G., & LeBlanc, J. G. (2014). Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities. Applied and Environmental Microbiology, 80(3), 869–877. https://doi.org/10.1128/AEM.03296-13


26. Di Cagno, R., De Angelis, M., Auricchio, S., Greco, L., Clarke, C., De Vincenzi, M., Giovannini, C., D’Archivio, M., Landolfo, F., Parrilli, G., Minervini, F., Arendt, E., & Gobbetti, M. (2004). Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, 70(2), 1088–1096. https://doi.org/10.1128/AEM.70.2.1088-1096.2004


27. Dimidi, E., Cox, S., Rossi, M., & Whelan, K. (2019). Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients, 11(8), 1806. https://doi.org/10.3390/nu11081806


28. Duan, W., Guan, Q., Zhang, H.-L., Wang, F.-Z., Lu, R., Li, D.-M., Geng, Y., & Xu, Z.-H. (2023). Improving flavor, bioactivity, and changing metabolic profiles of goji juice by selected lactic acid bacteria fermentation. Food Chemistry, 408, 135155. https://doi.org/10.1016/j.foodchem.2022.135155


29. Earnshaw, R. G. (1992a). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems. In The Lactic Acid Bacteria Volume 1 (pp. 211–232). Springer US. https://doi.org/10.1007/978-1-4615-3522-5_9


30. Earnshaw, R. G. (1992b). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems.


31. Earnshaw, R. G. (1992c). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems. In The Lactic Acid Bacteria Volume 1 (pp. 211–232). Springer US. https://doi.org/10.1007/978-1-4615-3522-5_9


32. Fang, F., Feng, T., Du, G., & Chen, J. (2016). Evaluation of the impact on food safety of a Lactobacillus coryniformis strain from pickled vegetables with degradation activity against nitrite and other undesirable compounds. Food Additives & Contaminants: Part A, 1–8. https://doi.org/10.1080/19440049.2016.1156774


33. Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944


34. Fernandes, C. F., Chandan, R. C., & Shahani, K. M. (1992). Fermented Dairy Products and Health. In The Lactic Acid Bacteria Volume 1 (pp. 297–339). Springer US. https://doi.org/10.1007/978-1-4615-3522-5_12


35. Ferrary Américo, M., Azevedo, V., & de Oliveira Carvalho, R. D. (2022). Genetically modified lactic acid bacteria in food and beverages: Safety concerns for industry and clinical use. In Lactic Acid Bacteria in Food Biotechnology (pp. 349–363). Elsevier. https://doi.org/10.1016/B978-0-323-89875-1.00003-1


36. Foligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: the possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284–292. https://doi.org/10.1016/j.mib.2013.06.008


37. Gardiner, G., Ross, R. P., Collins, J. K., Fitzgerald, G., & Stanton, C. (1998). Development of a Probiotic Cheddar Cheese Containing Human-Derived Lactobacillus paracasei Strains. Applied and Environmental Microbiology, 64(6), 2192–2199. https://doi.org/10.1128/AEM.64.6.2192-2199.1998


38. Gill, H. S., Rutherfurd, K. J., & Cross, M. L. (2001). Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. Journal of Clinical Immunology, 21(4), 264–271. https://doi.org/10.1023/a:1010979225018


39. Giraffa, G. (2004). Studying the dynamics of microbial populations during food fermentation: Table 1. FEMS Microbiology Reviews, 28(2), 251–260. https://doi.org/10.1016/j.femsre.2003.10.005


40. Halliwell, B., & Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. The American Journal of Clinical Nutrition, 57(5), 715S-725S. https://doi.org/10.1093/ajcn/57.5.715S


41. Han, W., Mercenier, A., Ait-Belgnaoui, A., Pavan, S., Lamine, F., van Swam, I. I., Kleerebezem, M., Salvador-Cartier, C., Hisbergues, M., Bueno, L., Theodorou, V., & Fioramonti, J. (2006). Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflammatory Bowel Diseases, 12(11), 1044–1052. https://doi.org/10.1097/01.mib.0000235101.09231.9e


42. Hayek, S. A., & Ibrahim, S. A. (2013a). Current Limitations and Challenges with Lactic Acid Bacteria: A Review. Food and Nutrition Sciences, 04(11), 73–87. https://doi.org/10.4236/fns.2013.411A010


43. Hayek, S. A., & Ibrahim, S. A. (2013b). Current Limitations and Challenges with Lactic Acid Bacteria: A Review. Food and Nutrition Sciences, 04(11), 73–87. https://doi.org/10.4236/fns.2013.411A010


44. Heitmann, M., Zannini, E., & Arendt, E. (2018). Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Critical Reviews in Food Science and Nutrition, 58(7), 1152–1164. https://doi.org/10.1080/10408398.2016.1244153


45. Hellman, U., Wernstedt, C., Gonez, J., & Heldin, C. H. (1995). Improvement of an “In-Gel” Digestion Procedure for the Micropreparation of Internal Protein Fragments for Amino Acid Sequencing. Analytical Biochemistry, 224(1), 451–455. https://doi.org/10.1006/abio.1995.1070


46. Hironaka, M., Hirata, M., Takanashi, H., Hano, T., & Miura, S. (2001). KINETICS OF LACTIC ACID EXTRACTION WITH QUATERNARY AMMONIUM SALT. Separation Science and Technology, 36(13), 2927–2943. https://doi.org/10.1081/SS-100107637


47. Ilavenil, S., Kim, D., Valan Arasu, M., Srigopalram, S., Sivanesan, R., & Choi, K. (2015). Phenyllactic Acid from Lactobacillus plantarum PromotesAdipogenic Activity in 3T3-L1 Adipocyte via Up-Regulationof PPAR-γ2. Molecules, 20(8), 15359–15373. https://doi.org/10.3390/molecules200815359


48. ISOGAI, A. (2009). Aroma Compounds Responsible for the Aging of Sake and Their Formation Mechanism. JOURNAL OF THE BREWING SOCIETY OF JAPAN, 104(11), 847–857. https://doi.org/10.6013/jbrewsocjapan.104.847


49. Jageethadevi, A., Saranraj, P., & Ramya, & N. (n.d.). Asian Journal of Biochemical and Pharmaceutical Research Inhibitory Effect of Chemical Preservatives & Organic Acids On The Growth of Bacterial Pathogens In Poultry Chicken. Asian Journal of Biochemical and Pharmaceutical Research Issue, 1, 2012.


50. Janani, D., Lad, S. S., Rawson, A., Sivanandham, V., & Rajamani, M. (2022). Effect of microwave and ultrasound‐assisted extraction methods on phytochemical extraction of bee propolis of Indian origin and its antibacterial activity. International Journal of Food Science & Technology, 57(11), 7205–7213. https://doi.org/10.1111/ijfs.16066


51. Jones, W. P., & Kinghorn, A. D. (2012). Extraction of Plant Secondary Metabolites (pp. 341–366). https://doi.org/10.1007/978-1-61779-624-1_13


52. Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H.-Y., Park, W.-S., & Jeon, C. O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153(3), 378–387. https://doi.org/10.1016/j.ijfoodmicro.2011.11.030


53. Kaizu, H., Sasaki, M., Nakajima, H., & Suzuki, Y. (1993). Effect of Antioxidative Lactic Acid Bacteria on Rats Fed a Diet Deficient in Vitamin E. Journal of Dairy Science, 76(9), 2493–2499. https://doi.org/10.3168/jds.S0022-0302(93)77584-0


54. Kalantzopoulos, G. (1997). Fermented Products with Probiotic Qualities. Anaerobe, 3(2–3), 185–190. https://doi.org/10.1006/anae.1997.0099


55. Kieliszek, M., Pobiega, K., Piwowarek, K., & Kot, A. M. (2021). Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules, 26(7), 1858. https://doi.org/10.3390/molecules26071858


56. Kim, K., Lee, G., Thanh, H. D., Kim, J.-H., Konkit, M., Yoon, S., Park, M., Yang, S., Park, E., & Kim, W. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal of Dairy Science, 101(7), 5702–5712. https://doi.org/10.3168/jds.2017-14151


57. Kıvanç, M., & Yapıcı, E. (2015). Kefir as a Probiotic Dairy Beverage: Determination Lactic Acid Bacteria and Yeast. ETP International Journal of Food Engineering. https://doi.org/10.18178/ijfe.1.1.55-60


58. Klewicki, R., & Klewicka, E. (2004). Antagonistic activity of lactic acid bacteria as probiotics against selected bacteria of the Enterobaceriacae family in the presence of polyols and their galactosyl derivatives. Biotechnology Letters, 26(4), 317–320. https://doi.org/10.1023/B:BILE.0000015450.59100.60


59. Kolida, S., & Gibson, G. R. (2011). Synbiotics in health and disease. Annual Review of Food Science and Technology, 2, 373–393. https://doi.org/10.1146/annurev-food-022510-133739


60. Kragl, U. (Ed.). (2005). Technology Transfer in Biotechnology (Vol. 92). Springer Berlin Heidelberg. https://doi.org/10.1007/b14094


61. Kullisaar, T., Songisepp, E., & Zilmer, M. (2012). Probiotics and Oxidative Stress. In Oxidative Stress – Environmental Induction and Dietary Antioxidants. InTech. https://doi.org/10.5772/33924


62. Lakshmipraba, J., Arunachalam, S., Riyasdeen, A., Dhivya, R., Vignesh, S., Akbarsha, M. A., & James, R. A. (2013). DNA/RNA binding and anticancer/antimicrobial activities of polymer–copper(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 109, 23–31. https://doi.org/10.1016/j.saa.2013.02.020


63. Law, J., & Haandrikman, A. (1997). Proteolytic enzymes of lactic acid bacteria. International Dairy Journal, 7(1), 1–11. https://doi.org/10.1016/0958-6946(95)00073-9


64. Le Bars, D., & Yvon, M. (2007). Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. Journal of Applied Microbiology, 0(0), 070915215109007-??? https://doi.org/10.1111/j.1365-2672.2007.03539.x


65. Lee, S.-J., Jeon, H.-S., Yoo, J.-Y., & Kim, J.-H. (2021). Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods (Basel, Switzerland), 10(9). https://doi.org/10.3390/foods10092148


66. Li, N., Wang, Y., Zhu, P., Liu, Z., Guo, B., & Ren, J. (2015). Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiological Research, 171, 73–77. https://doi.org/10.1016/j.micres.2014.12.006


67. Li, X., Gao, J., Simal-Gandara, J., Wang, X., Caprioli, G., Mi, S., & Sang, Y. (2021). Effect of fermentation by Lactobacillus acidophilus CH-2 on the enzymatic browning of pear juice. LWT, 147, 111489. https://doi.org/10.1016/j.lwt.2021.111489


68. Li, Y., Yin, Z., Zhang, Y., Liu, J., Cheng, Y., Wang, J., Pi, F., Zhang, Y., & Sun, X. (2022). Perspective of Microbe-based Minerals Fortification in Nutrition Security. Food Reviews International, 38(3), 268–281. https://doi.org/10.1080/87559129.2020.1728308


69. Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460–1466. https://doi.org/10.1021/jf981149l


70. Maeng, W. J., Van Nevel, C. J., Baldwin, R. L., & Morris, J. G. (1976). Rumen Microbial Growth Rates and Yields: Effect of Amino Acids and Protein. Journal of Dairy Science, 59(1), 68–79. https://doi.org/10.3168/jds.S0022-0302(76)84157-4


71. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010


72. Mehmood, T., Anwar, F., & Tabassam, Q. (2021). Eriodictyol. In A Centum of Valuable Plant Bioactives (pp. 467–489). Elsevier. https://doi.org/10.1016/B978-0-12-822923-1.00004-2


73. Michelsen, K. S., Aicher, A., Mohaupt, M., Hartung, T., Dimmeler, S., Kirschning, C. J., & Schumann, R. R. (2001). The Role of Toll-like Receptors (TLRs) in Bacteria-induced Maturation of Murine Dendritic Cells (DCs). Journal of Biological Chemistry, 276(28), 25680–25686. https://doi.org/10.1074/jbc.M011615200


74. MILLS, S., O’SULLIVAN, O., HILL, C., FITZGERALD, G., & ROSS, R. P. (2010). The changing face of dairy starter culture research: From genomics to economics. International Journal of Dairy Technology, 63(2), 149–170. https://doi.org/10.1111/j.1471-0307.2010.00563.x


75. Minussi, R. C., Pastore, G. M., & Dura´ndura´n, N. (n.d.). Potential applications of laccase in the food industry.


76. Mozzi, F. (2016). Lactic Acid Bacteria. In Encyclopedia of Food and Health (pp. 501–508). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00414-1


77. Muhialdin, B. J., Hassan, Z., & Sadon, S. Kh. (2011). Antifungal Activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on Selected Foods. Journal of Food Science, 76(7), M493–M499. https://doi.org/10.1111/j.1750-3841.2011.02292.x


78. Mummaleti, G., Sarma, C., Kalakandan, S., Sivanandham, V., Rawson, A., & Anandharaj, A. (2021). Optimization and extraction of edible microbial polysaccharide from fresh coconut inflorescence sap: An alternative substrate. LWT, 138, 110619. https://doi.org/10.1016/j.lwt.2020.110619


79. NAGAO, F., NAKAYAMA, M., MUTO, T., & OKUMURA, K. (2000a). Effects of a Fermented Milk Drink Containing Lactobacillus casei Strain Shirota on the Immune System in Healthy Human Subjects. Bioscience, Biotechnology, and Biochemistry, 64(12), 2706–2708. https://doi.org/10.1271/bbb.64.2706


80. NAGAO, F., NAKAYAMA, M., MUTO, T., & OKUMURA, K. (2000b). Effects of a Fermented Milk Drink Containing Lactobacillus casei Strain Shirota on the Immune System in Healthy Human Subjects. Bioscience, Biotechnology, and Biochemistry, 64(12), 2706–2708. https://doi.org/10.1271/bbb.64.2706


81. Nagao, F., Yabe, T., Xu, M., & Okumura, K. (1995). Phenotypical and functional analyses of natural killer cells from low NK activity individuals among healthy and patient populations. Natural Immunity, 14(5–6), 225–233.


82. Nethery, M. A., Henriksen, E. D., Daughtry, K. V., Johanningsmeier, S. D., & Barrangou, R. (2019). Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage. BMC Genomics, 20(1), 902. https://doi.org/10.1186/s12864-019-6274-0


83. Olivares-Illana, V., López-Munguía, A., & Olvera, C. (2003). Molecular Characterization of Inulosucrase from Leuconostoc citreum : a Fructosyltransferase within a Glucosyltransferase. Journal of Bacteriology, 185(12), 3606–3612. https://doi.org/10.1128/JB.185.12.3606-3612.2003


84. Osborne, J. P., Mira de Orduña, R., Pilone, G. J., & Liu, S.-Q. (2000). Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiology Letters, 191(1), 51–55. https://doi.org/10.1111/j.1574-6968.2000.tb09318.x


85. Palla, M., Cristani, C., Giovannetti, M., & Agnolucci, M. (2017). Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. International Journal of Food Microbiology, 250, 19–26. https://doi.org/10.1016/j.ijfoodmicro.2017.03.015


86. Park, B., Hwang, H., Chang, J. Y., Hong, S. W., Lee, S. H., Jung, M. Y., Sohn, S.-O., Park, H. W., & Lee, J.-H. (2017). Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening. Scientific Reports, 7(1), 10904. https://doi.org/10.1038/s41598-017-10948-0


87. Park, Y.-C., Oh, E. J., Jo, J.-H., Jin, Y.-S., & Seo, J.-H. (2016). Recent advances in biological production of sugar alcohols. Current Opinion in Biotechnology, 37, 105–113. https://doi.org/10.1016/j.copbio.2015.11.006


88. Patrick, O. M. (2012). Lactic Acid Bacteria in Health and Disease. In Rwanda Journal of Health Sciences (Vol. 1, Issue 1).


89. Paul Ross, R., Morgan, S., & Hill, C. (2002). Preservation and fermentation: past, present and future. International Journal of Food Microbiology, 79(1–2), 3–16. https://doi.org/10.1016/S0168-1605(02)00174-5


90. Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 13(S1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3


91. Pessione, E., Mazzoli, R., Giuffrida, M. G., Lamberti, C., Garcia-Moruno, E., Barello, C., Conti, A., & Giunta, C. (2005). A proteomic approach to studying biogenic amine producing lactic acid bacteria. PROTEOMICS, 5(3), 687–698. https://doi.org/10.1002/pmic.200401116


92. Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019a). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLOS Genetics, 15(5), e1008145. https://doi.org/10.1371/journal.pgen.1008145


93. Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019b). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLOS Genetics, 15(5), e1008145. https://doi.org/10.1371/journal.pgen.1008145


94. Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019c). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLOS Genetics, 15(5), e1008145. https://doi.org/10.1371/journal.pgen.1008145


95. Podbielski, A., & Leonard, B. A. B. (1998). The group a streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Molecular Microbiology, 28(6), 1323–1334. https://doi.org/10.1046/j.1365-2958.1998.00898.x


96. Pronk, J. T., Yde Steensma, H., & Van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast (Chichester, England), 12(16), 1607–1633. https://doi.org/10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4


97. Rakhimuzzaman, M., Noda, M., Danshiitsoodol, N., & Sugiyama, M. (2019). Development of a System of High Ornithine and Citrulline Production by a Plant-Derived Lactic Acid Bacterium, &lt;i&gt;Weissella confusa&lt;/i&gt; K-28. Biological and Pharmaceutical Bulletin, 42(9), 1581–1589. https://doi.org/10.1248/bpb.b19-00410


98. Reis, J. A., Paula, A. T., Casarotti, S. N., & Penna, A. L. B. (2012). Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Engineering Reviews, 4(2), 124–140. https://doi.org/10.1007/s12393-012-9051-2


99. Rodríguez, J. (2003). Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology, 80(2), 101–116. https://doi.org/10.1016/S0168-1605(02)00153-8


100. Ruiz de la Bastida, A., Peirotén, Á., Langa, S., Álvarez, I., Arqués, J. L., & Landete, J. M. (2021). Metabolism of flavonoids and lignans by lactobacilli and bifidobacteria strains improves the nutritional properties of flaxseed-enriched beverages. Food Research International, 147, 110488. https://doi.org/10.1016/j.foodres.2021.110488


101. Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., & Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/j.foodres.2020.109854


102. Russell, J. B., & Cook, G. M. (1995). Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiological Reviews, 59(1), 48–62. https://doi.org/10.1128/mr.59.1.48-62.1995


103. Sakko, M., Moore, C., Novak-Frazer, L., Rautemaa, V., Sorsa, T., Hietala, P., Järvinen, A., Bowyer, P., Tjäderhane, L., & Rautemaa, R. (2014). 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses, 57(4), 214–221. https://doi.org/10.1111/myc.12145


104. Sakko, M., Tjäderhane, L., Sorsa, T., Hietala, P., & Rautemaa, R. (2017). 2-Hydroxyisocaproic acid is bactericidal in human dental root canals ex vivo. International Endodontic Journal, 50(5), 455–463. https://doi.org/10.1111/iej.12639


105. Sanlibaba, P., Güçer, Y., & Şanlıbaba, P. (2015). ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIA. In Agriculture & Food ISSN (Vol. 3). www.scientific-publications.net


106. San-Martín, M., Pazos, C., & Coca, J. (2007). Reactive extraction of lactic acid with Alamine 336 in the presence of salts and lactose. Journal of Chemical Technology & Biotechnology, 54(1), 1–6. https://doi.org/10.1002/jctb.280540102


107. Savijoki, K., & Palva, A. (2000). Purification and Molecular Characterization of a Tripeptidase (PepT) from Lactobacillus helveticus. Applied and Environmental Microbiology, 66(2), 794–800. https://doi.org/10.1128/AEM.66.2.794-800.2000


108. Scheler, C., Popovic, M. K., Iannotti, E. L., & Bajpai, R. K. (1999). Mass transfer coefficients in reactive extraction of lactic acid from fermentation broths in hollow-fibre membranes. The Canadian Journal of Chemical Engineering, 77(5), 863–868. https://doi.org/10.1002/cjce.5450770511


109. Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014


110. Sharma, A., Gupta, G., Ahmad, T., Kaur, B., & Hakeem, K. R. (2020). Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. Journal of Microbiological Methods, 170, 105862. https://doi.org/10.1016/j.mimet.2020.105862


111. Siebold, M., P.v, F., R, J., D, R., K, S., & H, R. (1995). Comparison of the Production of Lactic Acid by Three Different Lactobacilli and its Recovery by Extraction and Electrodialysis. Process Biochemistry, 30(1), 81–95. https://doi.org/10.1016/0032-9592(95)87011-3


112. Smit, G., Smit, B. A., & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews, 29(3), 591–610. https://doi.org/10.1016/j.fmrre.2005.04.002


113. Soetaert, W., Schwengers, D., Buchholz, K., & Vandamme, E. J. (1995). A wide range of carbohydrate modifications by a single micro-organism: leuconostoc mesenteroides (pp. 351–358). https://doi.org/10.1016/S0921-0423(06)80116-4


114. Springer-Verlag, ©, Exterkate, F. A., De Jong, M., De Veer, G. J. C. M., & Baankreis, R. (1992). Applied Microbiology Biotechnology Location and characterization of aminopeptidase N in Lactococcus lactis subsp, cremoris HP. In Appl Microbiol Biotechnol (Vol. 37).


115. Stanojević-Nikolić, S., Dimić, G., Mojović, L., Pejin, J., Djukić-Vuković, A., & Kocić-Tanackov, S. (2016). Antimicrobial Activity of Lactic Acid Against Pathogen and Spoilage Microorganisms. Journal of Food Processing and Preservation, 40(5), 990–998. https://doi.org/10.1111/jfpp.12679


116. Stefanovic, E., Kilcawley, K. N., Rea, M. C., Fitzgerald, G. F., & McAuliffe, O. (2017). Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification. Journal of Applied Microbiology, 122(5), 1245–1261. https://doi.org/10.1111/jam.13420


117. Stewart, G. G. (2017). Brewing and Distilling Yeasts. Springer International Publishing. https://doi.org/10.1007/978-3-319-69126-8


118. Stieglmeier, M., Wirth, R., Kminek, G., & Moissl-Eichinger, C. (2009). Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms. Applied and Environmental Microbiology, 75(11), 3484–3491. https://doi.org/10.1128/AEM.02565-08


119. Stoyanova, L. G., Ustyugova, E. A., & Netrusov, A. I. (2012). Antibacterial metabolites of lactic acid bacteria: Their diversity and properties. Applied Biochemistry and Microbiology, 48(3), 229–243. https://doi.org/10.1134/S0003683812030143


120. Sun, C., Peng, H., Zhang, W., Zheng, M., Tian, W., Zhang, Y., Liu, H., Lin, Z., Deng, Z., & Qu, X. (2021). Production of Heterodimeric Diketopiperazines Employing a Mycobacterium -Based Whole-Cell Biocatalysis System. The Journal of Organic Chemistry, 86(16), 11189–11197. https://doi.org/10.1021/acs.joc.1c00380


121. Suriyamoorthy, P., Madhuri, A., Tangirala, S., Michael, K. R., Sivanandham, V., Rawson, A., & Anandharaj, A. (2022). Comprehensive Review on Banana Fruit Allergy: Pathogenesis, Diagnosis, Management, and Potential Modification of Allergens through Food Processing. Plant Foods for Human Nutrition, 77(2), 159–171. https://doi.org/10.1007/s11130-022-00976-1


122. T, B. (2018a). Lactic acid bacteria: their applications in foods. Journal of Bacteriology & Mycology: Open Access, 6(2). https://doi.org/10.15406/jbmoa.2018.06.00182


123. T, B. (2018b). Lactic acid bacteria: their applications in foods. Journal of Bacteriology & Mycology: Open Access, 6(2). https://doi.org/10.15406/jbmoa.2018.06.00182


124. Talarico, T. L., Casas, I. A., Chung, T. C., & Dobrogosz, W. J. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial Agents and Chemotherapy, 32(12), 1854–1858. https://doi.org/10.1128/AAC.32.12.1854


125. Tamang, J. P., Dewan, S., Thapa, S., Olasupo, N. A., Schillinger, U., Wijaya, A., & Holzapfel, W. H. (2000). Identification and enzymatic profiles of the predominant lactic acid bacteria isolated from soft‐variety Chhurpi, a traditional cheese typical of the Sikkim Himalayas. Food Biotechnology, 14(1–2), 99–112. https://doi.org/10.1080/08905430009549982


126. Teusink, B., & Smid, E. J. (2006). Modelling strategies for the industrial exploitation of lactic acid bacteria. In Nature Reviews Microbiology (Vol. 4, Issue 1, pp. 46–56). https://doi.org/10.1038/nrmicro1319


127. Thakur, K., Tomar, S. K., & De, S. (2016). Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology, 9(4), 441–451. https://doi.org/10.1111/1751-7915.12335


128. Thiele, C., Gänzle, M. G., & Vogel, R. F. (2002). Contribution of Sourdough Lactobacilli, Yeast, and Cereal Enzymes to the Generation of Amino Acids in Dough Relevant for Bread Flavor. Cereal Chemistry Journal, 79(1), 45–51. https://doi.org/10.1094/CCHEM.2002.79.1.45


129. Tracey’-, R. P., & Britz-, T. J. (1989). Freon 11 Extraction of Volatile Metabolites Formed by Certain Lactic Acid Bacteria. https://journals.asm.org/journal/aem


130. Twomey, D., Ross, R. P., Ryan, M., Meaney, B., & Hill, C. (2002). Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie van Leeuwenhoek, 82(1–4), 165–185.


131. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 82(1–4), 187–216.


132. van Reenen, C. A., & Dicks, L. M. T. (2011). Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Archives of Microbiology, 193(3), 157–168. https://doi.org/10.1007/s00203-010-0668-3


133. Venegas‐Ortega, M. G., Flores‐Gallegos, A. C., Martínez‐Hernández, J. L., Aguilar, C. N., & Nevárez‐Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455


134. Vignesh, G., Arunachalam, S., Vignesh, S., & James, R. A. (2012). BSA binding and antimicrobial studies of branched polyethyleneimine–copper(II)bipyridine/phenanthroline complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 108–116. https://doi.org/10.1016/j.saa.2012.05.009


135. Vignesh, S., Muthukumar, K., & Arthur James, R. (2012). Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin, 64(4), 790–800. https://doi.org/10.1016/j.marpolbul.2012.01.015


136. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021a). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. In Frontiers in Bioengineering and Biotechnology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2021.612285


137. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021b). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.612285


138. Wasewar, K. L., Heesink, A. B. M., Versteeg, G. F., & Pangarkar, V. G. (2002). Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. Journal of Biotechnology, 97(1), 59–68. https://doi.org/10.1016/S0168-1656(02)00057-3


139. Wedajo, B. (2015). Lactic Acid Bacteria: Benefits, Selection Criteria and Probiotic Potential in Fermented Food. Journal of Probiotics & Health, 03(02). https://doi.org/10.4172/2329-8901.1000129


140. Wisselink, H. W., Moers, A. P. H. A., Mars, A. E., Hoefnagel, M. H. N., de Vos, W. M., & Hugenholtz, J. (2005). Overproduction of Heterologous Mannitol 1-Phosphatase: a Key Factor for Engineering Mannitol Production by Lactococcus lactis. Applied and Environmental Microbiology, 71(3), 1507–1514. https://doi.org/10.1128/AEM.71.3.1507-1514.2005


141. Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., & Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 12(2–3), 151–161. https://doi.org/10.1016/S0958-6946(01)00153-4


142. Xiong, T., Li, X., Guan, Q., Peng, F., & Xie, M. (2014). Starter culture fermentation of Chinese sauerkraut: Growth, acidification and metabolic analyses. Food Control, 41, 122–127. https://doi.org/10.1016/j.foodcont.2013.12.033


143. Yang, S., Ngwenya, B. T., Butler, I. B., Kurlanda, H., & Elphick, S. C. (2013). Coupled interactions between metals and bacterial biofilms in porous media: Implications for biofilm stability, fluid flow and metal transport. Chemical Geology, 337–338, 20–29. https://doi.org/10.1016/j.chemgeo.2012.11.005


144. Yashwant, C. P., Rajendran, V., Krishnamoorthy, S., Nagarathinam, B., Rawson, A., Anandharaj, A., & Sivanandham, V. (2023). Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Science and Biotechnology, 32(6), 863–874. https://doi.org/10.1007/s10068-022-01222-9


145. Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2, 50–56. https://doi.org/10.1016/j.apcbee.2012.06.010


146. Zahid, M. (2015). Antimicrobial Activity of Bacteriocins Isolated from Lactic Acid Bacteria Against Resistant Pathogenic Strains. International Journal of Nutrition and Food Sciences, 4(3), 326. https://doi.org/10.11648/j.ijnfs.20150403.20


147. Al Kassaa, I., Hober, D., Hamze, M., Chihib, N. E., & Drider, D. (2014). Antiviral Potential of Lactic Acid Bacteria and Their Bacteriocins. Probiotics and Antimicrobial Proteins, 6(3–4), 177–185. https://doi.org/10.1007/s12602-014-9162-6


148. Ali, W. Ben, Ayed, A. Ben, Turbé-Doan, A., Bertrand, E., Mathieu, Y., Faulds, C. B., Lomascolo, A., Sciara, G., Record, E., & Mechichi, T. (2020). Enzyme properties of a laccase obtained from the transcriptome of the marine-derived fungus stemphylium lucomagnoense. International Journal of Molecular Sciences, 21(21), 1–16. https://doi.org/10.3390/ijms21218402


149. Axelsson, L. T., Chung, T. C., Dobrogosz, W. J., & Lindgren, S. E. (1989). Production of a Broad Spectrum Antimicrobial Substance by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2(2), 131–136. https://doi.org/10.3109/08910608909140210


150. Baankreis, R., & Exterkate, F. A. (1991). Characterisation of a Peptidase from Lactococcus lactis ssp* cremoris HP that Hydrolyses Di- and Tripeptides Containing Proline or Hydrophobic Residues as the Aminoterminal Amino Acid. Systematic and Applied Microbiology, 14(4), 317–323. https://doi.org/10.1016/S0723-2020(11)80305-X


151. Barbieri, F., Montanari, C., Gardini, F., & Tabanelli, G. (2019). Biogenic amine production by lactic acid bacteria: A review. In Foods (Vol. 8, Issue 1). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/foods8010017


152. Beasley, S. S., & Saris, P. E. J. (2004). Nisin-Producing Lactococcus lactis Strains Isolated from Human Milk. Applied and Environmental Microbiology, 70(8), 5051–5053. https://doi.org/10.1128/AEM.70.8.5051-5053.2004


153. Bolhuis, H., Van Veen, H. W., Molenaar, D., Poolman, B., Driessen, A. J. M., & Konings, W. N. (1996). Multidrug resistance in Lactococcus lactis: Evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO Journal, 15(16), 4239–4245. https://doi.org/10.1002/j.1460-2075.1996.tb00798.x


154. Bourdichon, F., Casaregola, S., Farrokh, C., Frisvad, J. C., Gerds, M. L., Hammes, W. P., Harnett, J., Huys, G., Laulund, S., Ouwehand, A., Powell, I. B., Prajapati, J. B., Seto, Y., Ter Schure, E., Van Boven, A., Vankerckhoven, V., Zgoda, A., Tuijtelaars, S., & Hansen, E. B. (2012). Food fermentations: Microorganisms with technological beneficial use. International Journal of Food Microbiology, 154(3), 87–97. https://doi.org/10.1016/j.ijfoodmicro.2011.12.030


155. Bover-Cid, S., & Holzapfel, W. H. (1999). Improved screening procedure for biogenic amine production by lactic acid bacteria. International Journal of Food Microbiology, 53(1), 33–41. https://doi.org/10.1016/S0168-1605(99)00152-X


156. Brenna, O., & Bianchi, E. (1994). Immobilised laccase for phenolic removal in must and wine. Biotechnology Letters, 16(1), 35–40. https://doi.org/10.1007/BF01022620


157. Britton, R. A. (2017). Lactobacillus reuteri. In The Microbiota in Gastrointestinal Pathophysiology (pp. 89–97). Elsevier. https://doi.org/10.1016/B978-0-12-804024-9.00008-2


158. Bron, P. A., & Kleerebezem, M. (2011). Engineering lactic acid bacteria for increased industrial functionality. Bioengineered Bugs, 2(2), 80–87. https://doi.org/10.4161/bbug.2.2.13910


159. Brosnan, B., Coffey, A., Arendt, E. K., & Furey, A. (2012). Rapid identification, by use of the LTQ Orbitrap hybrid FT mass spectrometer, of antifungal compounds produced by lactic acid bacteria. Analytical and Bioanalytical Chemistry, 403(10), 2983–2995. https://doi.org/10.1007/s00216-012-5955-1


160. Bruinenberg, P. G., Vos, P., & De Vos, W. M. (1992). Proteinase overproduction in Lactococcus lactis strains: regulation and effect on growth and acidification in milk. Applied and Environmental Microbiology, 58(1), 78–84. https://doi.org/10.1128/aem.58.1.78-84.1992


161. Bruno-Bárcena, J. M., Andrus, J. M., Libby, S. L., Klaenhammer, T. R., & Hassan, H. M. (2004). Expression of a Heterologous Manganese Superoxide Dismutase Gene in Intestinal Lactobacilli Provides Protection against Hydrogen Peroxide Toxicity. Applied and Environmental Microbiology, 70(8), 4702–4710. https://doi.org/10.1128/AEM.70.8.4702-4710.2004


162. Callanan, M. J., & Ross, R. P. (2004a). Starter Cultures: Genetics (pp. 149–161). https://doi.org/10.1016/S1874-558X(04)80066-6


163. Callanan, M. J., & Ross, R. P. (2004b). Starter Cultures: Genetics (pp. 149–161). https://doi.org/10.1016/S1874-558X(04)80066-6


164. Cesselin, B., Henry, C., Gruss, A., Gloux, K., & Gaudu, P. (2021). Mechanisms of Acetoin Toxicity and Adaptive Responses in an Acetoin-Producing Species, Lactococcus lactis. Applied and Environmental Microbiology, 87(24). https://doi.org/10.1128/AEM.01079-21


165. Chauhan, P. S., Goradia, B., & Saxena, A. (2017). Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech, 7(5), 323. https://doi.org/10.1007/s13205-017-0955-7


166. Chung, T. C., Axelsson, L., Lindgren, S. E., & Dobrogosz, W. J. (1989). In Vitro Studies on Reuterin Synthesis by Lactobacillus reuteri. Microbial Ecology in Health and Disease, 2(2), 137–144. https://doi.org/10.3109/08910608909140211


167. de Souza, E. L., de Oliveira, K. Á., & de Oliveira, M. E. (2023). Influence of lactic acid bacteria metabolites on physical and chemical food properties. Current Opinion in Food Science, 49, 100981. https://doi.org/10.1016/j.cofs.2022.100981


168. De Vuyst, L., De Vin, F., Vaningelgem, F., & Degeest, B. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. In International Dairy Journal (Vol. 11).


169. De Vuyst, L., & Vandamme, E. J. (1994). Antimicrobial Potential of Lactic Acid Bacteria. In Bacteriocins of Lactic Acid Bacteria (pp. 91–142). Springer US. https://doi.org/10.1007/978-1-4615-2668-1_3


170. del Carmen, S., de Moreno de LeBlanc, A., Levit, R., Azevedo, V., Langella, P., Bermúdez-Humarán, L. G., & LeBlanc, J. G. (2017). Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. International Immunopharmacology, 42, 122–129. https://doi.org/10.1016/j.intimp.2016.11.017


171. del Carmen, S., de Moreno de LeBlanc, A., Martin, R., Chain, F., Langella, P., Bermúdez-Humarán, L. G., & LeBlanc, J. G. (2014). Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities. Applied and Environmental Microbiology, 80(3), 869–877. https://doi.org/10.1128/AEM.03296-13


172. Di Cagno, R., De Angelis, M., Auricchio, S., Greco, L., Clarke, C., De Vincenzi, M., Giovannini, C., D’Archivio, M., Landolfo, F., Parrilli, G., Minervini, F., Arendt, E., & Gobbetti, M. (2004). Sourdough Bread Made from Wheat and Nontoxic Flours and Started with Selected Lactobacilli Is Tolerated in Celiac Sprue Patients. Applied and Environmental Microbiology, 70(2), 1088–1096. https://doi.org/10.1128/AEM.70.2.1088-1096.2004


173. Dimidi, E., Cox, S., Rossi, M., & Whelan, K. (2019). Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease. Nutrients, 11(8), 1806. https://doi.org/10.3390/nu11081806


174. Duan, W., Guan, Q., Zhang, H.-L., Wang, F.-Z., Lu, R., Li, D.-M., Geng, Y., & Xu, Z.-H. (2023). Improving flavor, bioactivity, and changing metabolic profiles of goji juice by selected lactic acid bacteria fermentation. Food Chemistry, 408, 135155. https://doi.org/10.1016/j.foodchem.2022.135155


175. Earnshaw, R. G. (1992a). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems. In The Lactic Acid Bacteria Volume 1 (pp. 211–232). Springer US. https://doi.org/10.1007/978-1-4615-3522-5_9


176. Earnshaw, R. G. (1992b). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems.


177. Earnshaw, R. G. (1992c). The Antimicrobial Action of Lactic Acid Bacteria: Natural Food Preservation Systems. In The Lactic Acid Bacteria Volume 1 (pp. 211–232). Springer US. https://doi.org/10.1007/978-1-4615-3522-5_9


178. Fang, F., Feng, T., Du, G., & Chen, J. (2016). Evaluation of the impact on food safety of a Lactobacillus coryniformis strain from pickled vegetables with degradation activity against nitrite and other undesirable compounds. Food Additives & Contaminants: Part A, 1–8. https://doi.org/10.1080/19440049.2016.1156774


179. Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1), 1801944. https://doi.org/10.1080/19490976.2020.1801944


180. Fernandes, C. F., Chandan, R. C., & Shahani, K. M. (1992). Fermented Dairy Products and Health. In The Lactic Acid Bacteria Volume 1 (pp. 297–339). Springer US. https://doi.org/10.1007/978-1-4615-3522-5_12


181. Ferrary Américo, M., Azevedo, V., & de Oliveira Carvalho, R. D. (2022). Genetically modified lactic acid bacteria in food and beverages: Safety concerns for industry and clinical use. In Lactic Acid Bacteria in Food Biotechnology (pp. 349–363). Elsevier. https://doi.org/10.1016/B978-0-323-89875-1.00003-1


182. Foligné, B., Daniel, C., & Pot, B. (2013). Probiotics from research to market: the possibilities, risks and challenges. Current Opinion in Microbiology, 16(3), 284–292. https://doi.org/10.1016/j.mib.2013.06.008


183. Gardiner, G., Ross, R. P., Collins, J. K., Fitzgerald, G., & Stanton, C. (1998). Development of a Probiotic Cheddar Cheese Containing Human-Derived Lactobacillus paracasei Strains. Applied and Environmental Microbiology, 64(6), 2192–2199. https://doi.org/10.1128/AEM.64.6.2192-2199.1998


184. Gill, H. S., Rutherfurd, K. J., & Cross, M. L. (2001). Dietary probiotic supplementation enhances natural killer cell activity in the elderly: an investigation of age-related immunological changes. Journal of Clinical Immunology, 21(4), 264–271. https://doi.org/10.1023/a:1010979225018


185. Giraffa, G. (2004). Studying the dynamics of microbial populations during food fermentation: Table 1. FEMS Microbiology Reviews, 28(2), 251–260. https://doi.org/10.1016/j.femsre.2003.10.005


186. Halliwell, B., & Chirico, S. (1993). Lipid peroxidation: its mechanism, measurement, and significance. The American Journal of Clinical Nutrition, 57(5), 715S-725S. https://doi.org/10.1093/ajcn/57.5.715S


187. Han, W., Mercenier, A., Ait-Belgnaoui, A., Pavan, S., Lamine, F., van Swam, I. I., Kleerebezem, M., Salvador-Cartier, C., Hisbergues, M., Bueno, L., Theodorou, V., & Fioramonti, J. (2006). Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflammatory Bowel Diseases, 12(11), 1044–1052. https://doi.org/10.1097/01.mib.0000235101.09231.9e


188. Hayek, S. A., & Ibrahim, S. A. (2013a). Current Limitations and Challenges with Lactic Acid Bacteria: A Review. Food and Nutrition Sciences, 04(11), 73–87. https://doi.org/10.4236/fns.2013.411A010


189. Hayek, S. A., & Ibrahim, S. A. (2013b). Current Limitations and Challenges with Lactic Acid Bacteria: A Review. Food and Nutrition Sciences, 04(11), 73–87. https://doi.org/10.4236/fns.2013.411A010


190. Heitmann, M., Zannini, E., & Arendt, E. (2018). Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Critical Reviews in Food Science and Nutrition, 58(7), 1152–1164. https://doi.org/10.1080/10408398.2016.1244153


191. Hellman, U., Wernstedt, C., Gonez, J., & Heldin, C. H. (1995). Improvement of an “In-Gel” Digestion Procedure for the Micropreparation of Internal Protein Fragments for Amino Acid Sequencing. Analytical Biochemistry, 224(1), 451–455. https://doi.org/10.1006/abio.1995.1070


192. Hironaka, M., Hirata, M., Takanashi, H., Hano, T., & Miura, S. (2001). KINETICS OF LACTIC ACID EXTRACTION WITH QUATERNARY AMMONIUM SALT. Separation Science and Technology, 36(13), 2927–2943. https://doi.org/10.1081/SS-100107637


193. Ilavenil, S., Kim, D., Valan Arasu, M., Srigopalram, S., Sivanesan, R., & Choi, K. (2015). Phenyllactic Acid from Lactobacillus plantarum PromotesAdipogenic Activity in 3T3-L1 Adipocyte via Up-Regulationof PPAR-γ2. Molecules, 20(8), 15359–15373. https://doi.org/10.3390/molecules200815359


194. ISOGAI, A. (2009). Aroma Compounds Responsible for the Aging of Sake and Their Formation Mechanism. JOURNAL OF THE BREWING SOCIETY OF JAPAN, 104(11), 847–857. https://doi.org/10.6013/jbrewsocjapan.104.847


195. Jageethadevi, A., Saranraj, P., & Ramya, & N. (n.d.). Asian Journal of Biochemical and Pharmaceutical Research Inhibitory Effect of Chemical Preservatives & Organic Acids On The Growth of Bacterial Pathogens In Poultry Chicken. Asian Journal of Biochemical and Pharmaceutical Research Issue, 1, 2012.


196. Janani, D., Lad, S. S., Rawson, A., Sivanandham, V., & Rajamani, M. (2022). Effect of microwave and ultrasound‐assisted extraction methods on phytochemical extraction of bee propolis of Indian origin and its antibacterial activity. International Journal of Food Science & Technology, 57(11), 7205–7213. https://doi.org/10.1111/ijfs.16066


197. Jones, W. P., & Kinghorn, A. D. (2012). Extraction of Plant Secondary Metabolites (pp. 341–366). https://doi.org/10.1007/978-1-61779-624-1_13


198. Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H.-Y., Park, W.-S., & Jeon, C. O. (2012). Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology, 153(3), 378–387. https://doi.org/10.1016/j.ijfoodmicro.2011.11.030


199. Kaizu, H., Sasaki, M., Nakajima, H., & Suzuki, Y. (1993). Effect of Antioxidative Lactic Acid Bacteria on Rats Fed a Diet Deficient in Vitamin E. Journal of Dairy Science, 76(9), 2493–2499. https://doi.org/10.3168/jds.S0022-0302(93)77584-0
200. Kalantzopoulos, G. (1997). Fermented Products with Probiotic Qualities. Anaerobe, 3(2–3), 185–190. https://doi.org/10.1006/anae.1997.0099


201. Kieliszek, M., Pobiega, K., Piwowarek, K., & Kot, A. M. (2021). Characteristics of the Proteolytic Enzymes Produced by Lactic Acid Bacteria. Molecules, 26(7), 1858. https://doi.org/10.3390/molecules26071858


202. Kim, K., Lee, G., Thanh, H. D., Kim, J.-H., Konkit, M., Yoon, S., Park, M., Yang, S., Park, E., & Kim, W. (2018). Exopolysaccharide from Lactobacillus plantarum LRCC5310 offers protection against rotavirus-induced diarrhea and regulates inflammatory response. Journal of Dairy Science, 101(7), 5702–5712. https://doi.org/10.3168/jds.2017-14151


203. Kıvanç, M., & Yapıcı, E. (2015). Kefir as a Probiotic Dairy Beverage: Determination Lactic Acid Bacteria and Yeast. ETP International Journal of Food Engineering. https://doi.org/10.18178/ijfe.1.1.55-60


204. Klewicki, R., & Klewicka, E. (2004). Antagonistic activity of lactic acid bacteria as probiotics against selected bacteria of the Enterobaceriacae family in the presence of polyols and their galactosyl derivatives. Biotechnology Letters, 26(4), 317–320. https://doi.org/10.1023/B:BILE.0000015450.59100.60


205. Kolida, S., & Gibson, G. R. (2011). Synbiotics in health and disease. Annual Review of Food Science and Technology, 2, 373–393. https://doi.org/10.1146/annurev-food-022510-133739


206. Kragl, U. (Ed.). (2005). Technology Transfer in Biotechnology (Vol. 92). Springer Berlin Heidelberg. https://doi.org/10.1007/b14094


207. Kullisaar, T., Songisepp, E., & Zilmer, M. (2012). Probiotics and Oxidative Stress. In Oxidative Stress – Environmental Induction and Dietary Antioxidants. InTech. https://doi.org/10.5772/33924


208. Lakshmipraba, J., Arunachalam, S., Riyasdeen, A., Dhivya, R., Vignesh, S., Akbarsha, M. A., & James, R. A. (2013). DNA/RNA binding and anticancer/antimicrobial activities of polymer–copper(II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 109, 23–31. https://doi.org/10.1016/j.saa.2013.02.020


209. Law, J., & Haandrikman, A. (1997). Proteolytic enzymes of lactic acid bacteria. International Dairy Journal, 7(1), 1–11. https://doi.org/10.1016/0958-6946(95)00073-9


210. Le Bars, D., & Yvon, M. (2007). Formation of diacetyl and acetoin by Lactococcus lactis via aspartate catabolism. Journal of Applied Microbiology, 0(0), 070915215109007-??? https://doi.org/10.1111/j.1365-2672.2007.03539.x


211. Lee, S.-J., Jeon, H.-S., Yoo, J.-Y., & Kim, J.-H. (2021). Some Important Metabolites Produced by Lactic Acid Bacteria Originated from Kimchi. Foods (Basel, Switzerland), 10(9). https://doi.org/10.3390/foods10092148


212. Li, N., Wang, Y., Zhu, P., Liu, Z., Guo, B., & Ren, J. (2015). Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiological Research, 171, 73–77. https://doi.org/10.1016/j.micres.2014.12.006


213. Li, X., Gao, J., Simal-Gandara, J., Wang, X., Caprioli, G., Mi, S., & Sang, Y. (2021). Effect of fermentation by Lactobacillus acidophilus CH-2 on the enzymatic browning of pear juice. LWT, 147, 111489. https://doi.org/10.1016/j.lwt.2021.111489


214. Li, Y., Yin, Z., Zhang, Y., Liu, J., Cheng, Y., Wang, J., Pi, F., Zhang, Y., & Sun, X. (2022). Perspective of Microbe-based Minerals Fortification in Nutrition Security. Food Reviews International, 38(3), 268–281. https://doi.org/10.1080/87559129.2020.1728308


215. Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460–1466. https://doi.org/10.1021/jf981149l


216. Maeng, W. J., Van Nevel, C. J., Baldwin, R. L., & Morris, J. G. (1976). Rumen Microbial Growth Rates and Yields: Effect of Amino Acids and Protein. Journal of Dairy Science, 59(1), 68–79. https://doi.org/10.3168/jds.S0022-0302(76)84157-4


217. Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J., & Hutkins, R. (2017). Health benefits of fermented foods: microbiota and beyond. Current Opinion in Biotechnology, 44, 94–102. https://doi.org/10.1016/j.copbio.2016.11.010


218. Mehmood, T., Anwar, F., & Tabassam, Q. (2021). Eriodictyol. In A Centum of Valuable Plant Bioactives (pp. 467–489). Elsevier. https://doi.org/10.1016/B978-0-12-822923-1.00004-2


219. Michelsen, K. S., Aicher, A., Mohaupt, M., Hartung, T., Dimmeler, S., Kirschning, C. J., & Schumann, R. R. (2001). The Role of Toll-like Receptors (TLRs) in Bacteria-induced Maturation of Murine Dendritic Cells (DCs). Journal of Biological Chemistry, 276(28), 25680–25686. https://doi.org/10.1074/jbc.M011615200


220. MILLS, S., O’SULLIVAN, O., HILL, C., FITZGERALD, G., & ROSS, R. P. (2010). The changing face of dairy starter culture research: From genomics to economics. International Journal of Dairy Technology, 63(2), 149–170. https://doi.org/10.1111/j.1471-0307.2010.00563.x


221. Minussi, R. C., Pastore, G. M., & Dura´ndura´n, N. (n.d.). Potential applications of laccase in the food industry.


222. Mozzi, F. (2016). Lactic Acid Bacteria. In Encyclopedia of Food and Health (pp. 501–508). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00414-1


223. Muhialdin, B. J., Hassan, Z., & Sadon, S. Kh. (2011). Antifungal Activity of Lactobacillus fermentum Te007, Pediococcus pentosaceus Te010, Lactobacillus pentosus G004, and L. paracasi D5 on Selected Foods. Journal of Food Science, 76(7), M493–M499. https://doi.org/10.1111/j.1750-3841.2011.02292.x


224. Mummaleti, G., Sarma, C., Kalakandan, S., Sivanandham, V., Rawson, A., & Anandharaj, A. (2021). Optimization and extraction of edible microbial polysaccharide from fresh coconut inflorescence sap: An alternative substrate. LWT, 138, 110619. https://doi.org/10.1016/j.lwt.2020.110619


225. NAGAO, F., NAKAYAMA, M., MUTO, T., & OKUMURA, K. (2000a). Effects of a Fermented Milk Drink Containing Lactobacillus casei Strain Shirota on the Immune System in Healthy Human Subjects. Bioscience, Biotechnology, and Biochemistry, 64(12), 2706–2708. https://doi.org/10.1271/bbb.64.2706


226. NAGAO, F., NAKAYAMA, M., MUTO, T., & OKUMURA, K. (2000b). Effects of a Fermented Milk Drink Containing Lactobacillus casei Strain Shirota on the Immune System in Healthy Human Subjects. Bioscience, Biotechnology, and Biochemistry, 64(12), 2706–2708. https://doi.org/10.1271/bbb.64.2706


227. Nagao, F., Yabe, T., Xu, M., & Okumura, K. (1995). Phenotypical and functional analyses of natural killer cells from low NK activity individuals among healthy and patient populations. Natural Immunity, 14(5–6), 225–233.


228. Nethery, M. A., Henriksen, E. D., Daughtry, K. V., Johanningsmeier, S. D., & Barrangou, R. (2019). Comparative genomics of eight Lactobacillus buchneri strains isolated from food spoilage. BMC Genomics, 20(1), 902. https://doi.org/10.1186/s12864-019-6274-0


229. Olivares-Illana, V., López-Munguía, A., & Olvera, C. (2003). Molecular Characterization of Inulosucrase from Leuconostoc citreum : a Fructosyltransferase within a Glucosyltransferase. Journal of Bacteriology, 185(12), 3606–3612. https://doi.org/10.1128/JB.185.12.3606-3612.2003


230. Osborne, J. P., Mira de Orduña, R., Pilone, G. J., & Liu, S.-Q. (2000). Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiology Letters, 191(1), 51–55. https://doi.org/10.1111/j.1574-6968.2000.tb09318.x


231. Palla, M., Cristani, C., Giovannetti, M., & Agnolucci, M. (2017). Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. International Journal of Food Microbiology, 250, 19–26. https://doi.org/10.1016/j.ijfoodmicro.2017.03.015


232. Park, B., Hwang, H., Chang, J. Y., Hong, S. W., Lee, S. H., Jung, M. Y., Sohn, S.-O., Park, H. W., & Lee, J.-H. (2017). Identification of 2-hydroxyisocaproic acid production in lactic acid bacteria and evaluation of microbial dynamics during kimchi ripening. Scientific Reports, 7(1), 10904. https://doi.org/10.1038/s41598-017-10948-0


233. Park, Y.-C., Oh, E. J., Jo, J.-H., Jin, Y.-S., & Seo, J.-H. (2016). Recent advances in biological production of sugar alcohols. Current Opinion in Biotechnology, 37, 105–113. https://doi.org/10.1016/j.copbio.2015.11.006


234. Patrick, O. M. (2012). Lactic Acid Bacteria in Health and Disease. In Rwanda Journal of Health Sciences (Vol. 1, Issue 1).


235. Paul Ross, R., Morgan, S., & Hill, C. (2002). Preservation and fermentation: past, present and future. International Journal of Food Microbiology, 79(1–2), 3–16. https://doi.org/10.1016/S0168-1605(02)00174-5


236. Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microbial Cell Factories, 13(S1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3


237. Pessione, E., Mazzoli, R., Giuffrida, M. G., Lamberti, C., Garcia-Moruno, E., Barello, C., Conti, A., & Giunta, C. (2005). A proteomic approach to studying biogenic amine producing lactic acid bacteria. PROTEOMICS, 5(3), 687–698. https://doi.org/10.1002/pmic.200401116


238. Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019a). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLOS Genetics, 15(5), e1008145. https://doi.org/10.1371/journal.pgen.1008145


239. Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019b). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLOS Genetics, 15(5), e1008145. https://doi.org/10.1371/journal.pgen.1008145


240. Peters, A., Krumbholz, P., Jäger, E., Heintz-Buschart, A., Çakir, M. V., Rothemund, S., Gaudl, A., Ceglarek, U., Schöneberg, T., & Stäubert, C. (2019c). Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLOS Genetics, 15(5), e1008145. https://doi.org/10.1371/journal.pgen.1008145


241. Podbielski, A., & Leonard, B. A. B. (1998). The group a streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Molecular Microbiology, 28(6), 1323–1334. https://doi.org/10.1046/j.1365-2958.1998.00898.x


242. Pronk, J. T., Yde Steensma, H., & Van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast (Chichester, England), 12(16), 1607–1633. https://doi.org/10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4


243. Rakhimuzzaman, M., Noda, M., Danshiitsoodol, N., & Sugiyama, M. (2019). Development of a System of High Ornithine and Citrulline Production by a Plant-Derived Lactic Acid Bacterium, &lt;i&gt;Weissella confusa&lt;/i&gt; K-28. Biological and Pharmaceutical Bulletin, 42(9), 1581–1589. https://doi.org/10.1248/bpb.b19-00410


244. Reis, J. A., Paula, A. T., Casarotti, S. N., & Penna, A. L. B. (2012). Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Engineering Reviews, 4(2), 124–140. https://doi.org/10.1007/s12393-012-9051-2


245. Rodríguez, J. (2003). Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology, 80(2), 101–116. https://doi.org/10.1016/S0168-1605(02)00153-8


246. Ruiz de la Bastida, A., Peirotén, Á., Langa, S., Álvarez, I., Arqués, J. L., & Landete, J. M. (2021). Metabolism of flavonoids and lignans by lactobacilli and bifidobacteria strains improves the nutritional properties of flaxseed-enriched beverages. Food Research International, 147, 110488. https://doi.org/10.1016/j.foodres.2021.110488


247. Ruiz Rodríguez, L. G., Zamora Gasga, V. M., Pescuma, M., Van Nieuwenhove, C., Mozzi, F., & Sánchez Burgos, J. A. (2021). Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International, 140, 109854. https://doi.org/10.1016/j.foodres.2020.109854


248. Russell, J. B., & Cook, G. M. (1995). Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiological Reviews, 59(1), 48–62. https://doi.org/10.1128/mr.59.1.48-62.1995


249. Sakko, M., Moore, C., Novak-Frazer, L., Rautemaa, V., Sorsa, T., Hietala, P., Järvinen, A., Bowyer, P., Tjäderhane, L., & Rautemaa, R. (2014). 2-hydroxyisocaproic acid is fungicidal for Candida and Aspergillus species. Mycoses, 57(4), 214–221. https://doi.org/10.1111/myc.12145


250. Sakko, M., Tjäderhane, L., Sorsa, T., Hietala, P., & Rautemaa, R. (2017). 2-Hydroxyisocaproic acid is bactericidal in human dental root canals ex vivo. International Endodontic Journal, 50(5), 455–463. https://doi.org/10.1111/iej.12639


251. Sanlibaba, P., Güçer, Y., & Şanlıbaba, P. (2015). ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIA. In Agriculture & Food ISSN (Vol. 3). www.scientific-publications.net


252. San-Martín, M., Pazos, C., & Coca, J. (2007). Reactive extraction of lactic acid with Alamine 336 in the presence of salts and lactose. Journal of Chemical Technology & Biotechnology, 54(1), 1–6. https://doi.org/10.1002/jctb.280540102


253. Savijoki, K., & Palva, A. (2000). Purification and Molecular Characterization of a Tripeptidase (PepT) from Lactobacillus helveticus. Applied and Environmental Microbiology, 66(2), 794–800. https://doi.org/10.1128/AEM.66.2.794-800.2000


254. Scheler, C., Popovic, M. K., Iannotti, E. L., & Bajpai, R. K. (1999). Mass transfer coefficients in reactive extraction of lactic acid from fermentation broths in hollow-fibre membranes. The Canadian Journal of Chemical Engineering, 77(5), 863–868. https://doi.org/10.1002/cjce.5450770511


255. Shah, N. P. (2007). Functional cultures and health benefits. International Dairy Journal, 17(11), 1262–1277. https://doi.org/10.1016/j.idairyj.2007.01.014


256. Sharma, A., Gupta, G., Ahmad, T., Kaur, B., & Hakeem, K. R. (2020). Tailoring cellular metabolism in lactic acid bacteria through metabolic engineering. Journal of Microbiological Methods, 170, 105862. https://doi.org/10.1016/j.mimet.2020.105862


257. Siebold, M., P.v, F., R, J., D, R., K, S., & H, R. (1995). Comparison of the Production of Lactic Acid by Three Different Lactobacilli and its Recovery by Extraction and Electrodialysis. Process Biochemistry, 30(1), 81–95. https://doi.org/10.1016/0032-9592(95)87011-3


258. Smit, G., Smit, B. A., & Engels, W. J. M. (2005). Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiology Reviews, 29(3), 591–610. https://doi.org/10.1016/j.fmrre.2005.04.002


259. Soetaert, W., Schwengers, D., Buchholz, K., & Vandamme, E. J. (1995). A wide range of carbohydrate modifications by a single micro-organism: leuconostoc mesenteroides (pp. 351–358). https://doi.org/10.1016/S0921-0423(06)80116-4


260. Springer-Verlag, ©, Exterkate, F. A., De Jong, M., De Veer, G. J. C. M., & Baankreis, R. (1992). Applied Microbiology Biotechnology Location and characterization of aminopeptidase N in Lactococcus lactis subsp, cremoris HP. In Appl Microbiol Biotechnol (Vol. 37).


261. Stanojević-Nikolić, S., Dimić, G., Mojović, L., Pejin, J., Djukić-Vuković, A., & Kocić-Tanackov, S. (2016). Antimicrobial Activity of Lactic Acid Against Pathogen and Spoilage Microorganisms. Journal of Food Processing and Preservation, 40(5), 990–998. https://doi.org/10.1111/jfpp.12679


262. Stefanovic, E., Kilcawley, K. N., Rea, M. C., Fitzgerald, G. F., & McAuliffe, O. (2017). Genetic, enzymatic and metabolite profiling of the Lactobacillus casei group reveals strain biodiversity and potential applications for flavour diversification. Journal of Applied Microbiology, 122(5), 1245–1261. https://doi.org/10.1111/jam.13420


263. Stewart, G. G. (2017). Brewing and Distilling Yeasts. Springer International Publishing. https://doi.org/10.1007/978-3-319-69126-8


264. Stieglmeier, M., Wirth, R., Kminek, G., & Moissl-Eichinger, C. (2009). Cultivation of Anaerobic and Facultatively Anaerobic Bacteria from Spacecraft-Associated Clean Rooms. Applied and Environmental Microbiology, 75(11), 3484–3491. https://doi.org/10.1128/AEM.02565-08


265. Stoyanova, L. G., Ustyugova, E. A., & Netrusov, A. I. (2012). Antibacterial metabolites of lactic acid bacteria: Their diversity and properties. Applied Biochemistry and Microbiology, 48(3), 229–243. https://doi.org/10.1134/S0003683812030143


266. Sun, C., Peng, H., Zhang, W., Zheng, M., Tian, W., Zhang, Y., Liu, H., Lin, Z., Deng, Z., & Qu, X. (2021). Production of Heterodimeric Diketopiperazines Employing a Mycobacterium -Based Whole-Cell Biocatalysis System. The Journal of Organic Chemistry, 86(16), 11189–11197. https://doi.org/10.1021/acs.joc.1c00380


267. Suriyamoorthy, P., Madhuri, A., Tangirala, S., Michael, K. R., Sivanandham, V., Rawson, A., & Anandharaj, A. (2022). Comprehensive Review on Banana Fruit Allergy: Pathogenesis, Diagnosis, Management, and Potential Modification of Allergens through Food Processing. Plant Foods for Human Nutrition, 77(2), 159–171. https://doi.org/10.1007/s11130-022-00976-1


268. T, B. (2018a). Lactic acid bacteria: their applications in foods. Journal of Bacteriology & Mycology: Open Access, 6(2). https://doi.org/10.15406/jbmoa.2018.06.00182


269. T, B. (2018b). Lactic acid bacteria: their applications in foods. Journal of Bacteriology & Mycology: Open Access, 6(2). https://doi.org/10.15406/jbmoa.2018.06.00182


270. Talarico, T. L., Casas, I. A., Chung, T. C., & Dobrogosz, W. J. (1988). Production and isolation of reuterin, a growth inhibitor produced by Lactobacillus reuteri. Antimicrobial Agents and Chemotherapy, 32(12), 1854–1858. https://doi.org/10.1128/AAC.32.12.1854


271. Tamang, J. P., Dewan, S., Thapa, S., Olasupo, N. A., Schillinger, U., Wijaya, A., & Holzapfel, W. H. (2000). Identification and enzymatic profiles of the predominant lactic acid bacteria isolated from soft‐variety Chhurpi, a traditional cheese typical of the Sikkim Himalayas. Food Biotechnology, 14(1–2), 99–112. https://doi.org/10.1080/08905430009549982


272. Teusink, B., & Smid, E. J. (2006). Modelling strategies for the industrial exploitation of lactic acid bacteria. In Nature Reviews Microbiology (Vol. 4, Issue 1, pp. 46–56). https://doi.org/10.1038/nrmicro1319


273. Thakur, K., Tomar, S. K., & De, S. (2016). Lactic acid bacteria as a cell factory for riboflavin production. Microbial Biotechnology, 9(4), 441–451. https://doi.org/10.1111/1751-7915.12335


274. Thiele, C., Gänzle, M. G., & Vogel, R. F. (2002). Contribution of Sourdough Lactobacilli, Yeast, and Cereal Enzymes to the Generation of Amino Acids in Dough Relevant for Bread Flavor. Cereal Chemistry Journal, 79(1), 45–51. https://doi.org/10.1094/CCHEM.2002.79.1.45


275. Tracey’-, R. P., & Britz-, T. J. (1989). Freon 11 Extraction of Volatile Metabolites Formed by Certain Lactic Acid Bacteria. https://journals.asm.org/journal/aem


276. Twomey, D., Ross, R. P., Ryan, M., Meaney, B., & Hill, C. (2002). Lantibiotics produced by lactic acid bacteria: structure, function and applications. Antonie van Leeuwenhoek, 82(1–4), 165–185.


277. van de Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek, 82(1–4), 187–216.


278. van Reenen, C. A., & Dicks, L. M. T. (2011). Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Archives of Microbiology, 193(3), 157–168. https://doi.org/10.1007/s00203-010-0668-3


279. Venegas‐Ortega, M. G., Flores‐Gallegos, A. C., Martínez‐Hernández, J. L., Aguilar, C. N., & Nevárez‐Moorillón, G. V. (2019). Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455


280. Vignesh, G., Arunachalam, S., Vignesh, S., & James, R. A. (2012). BSA binding and antimicrobial studies of branched polyethyleneimine–copper(II)bipyridine/phenanthroline complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 108–116. https://doi.org/10.1016/j.saa.2012.05.009


281. Vignesh, S., Muthukumar, K., & Arthur James, R. (2012). Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin, 64(4), 790–800. https://doi.org/10.1016/j.marpolbul.2012.01.015
282. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021a). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. In Frontiers in Bioengineering and Biotechnology (Vol. 9). Frontiers Media S.A. https://doi.org/10.3389/fbioe.2021.612285


283. Wang, Y., Wu, J., Lv, M., Shao, Z., Hungwe, M., Wang, J., Bai, X., Xie, J., Wang, Y., & Geng, W. (2021b). Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.612285


284. Wasewar, K. L., Heesink, A. B. M., Versteeg, G. F., & Pangarkar, V. G. (2002). Reactive extraction of lactic acid using alamine 336 in MIBK: equilibria and kinetics. Journal of Biotechnology, 97(1), 59–68. https://doi.org/10.1016/S0168-1656(02)00057-3


285. Wedajo, B. (2015). Lactic Acid Bacteria: Benefits, Selection Criteria and Probiotic Potential in Fermented Food. Journal of Probiotics & Health, 03(02). https://doi.org/10.4172/2329-8901.1000129


286. Wisselink, H. W., Moers, A. P. H. A., Mars, A. E., Hoefnagel, M. H. N., de Vos, W. M., & Hugenholtz, J. (2005). Overproduction of Heterologous Mannitol 1-Phosphatase: a Key Factor for Engineering Mannitol Production by Lactococcus lactis. Applied and Environmental Microbiology, 71(3), 1507–1514. https://doi.org/10.1128/AEM.71.3.1507-1514.2005


287. Wisselink, H. W., Weusthuis, R. A., Eggink, G., Hugenholtz, J., & Grobben, G. J. (2002). Mannitol production by lactic acid bacteria: a review. International Dairy Journal, 12(2–3), 151–161. https://doi.org/10.1016/S0958-6946(01)00153-4


288. Xiong, T., Li, X., Guan, Q., Peng, F., & Xie, M. (2014). Starter culture fermentation of Chinese sauerkraut: Growth, acidification and metabolic analyses. Food Control, 41, 122–127. https://doi.org/10.1016/j.foodcont.2013.12.033


289. Yang, S., Ngwenya, B. T., Butler, I. B., Kurlanda, H., & Elphick, S. C. (2013). Coupled interactions between metals and bacterial biofilms in porous media: Implications for biofilm stability, fluid flow and metal transport. Chemical Geology, 337–338, 20–29. https://doi.org/10.1016/j.chemgeo.2012.11.005


290. Yashwant, C. P., Rajendran, V., Krishnamoorthy, S., Nagarathinam, B., Rawson, A., Anandharaj, A., & Sivanandham, V. (2023). Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Science and Biotechnology, 32(6), 863–874. https://doi.org/10.1007/s10068-022-01222-9


291. Zacharof, M. P., & Lovitt, R. W. (2012). Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Procedia, 2, 50–56. https://doi.org/10.1016/j.apcbee.2012.06.010


292. Zahid, M. (2015). Antimicrobial Activity of Bacteriocins Isolated from Lactic Acid Bacteria Against Resistant Pathogenic Strains. International Journal of Nutrition and Food Sciences, 4(3), 326. https://doi.org/10.11648/j.ijnfs.20150403.20

Acknowledgments

The authors express their sincere gratitude to the National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) – Thanjavur, Thanjavur, Tamil Nadu, for providing the facilities and DST-SERB-SRG/2021/001005 for funding support to carry out the study.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

(# Equally contributed)

1Postgraduate Student, Jawaharlal Nehru Institute of Arts and Science College, MG University, Kerala-685552

2National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Thanjavur – 613 005, Tamil Nadu, India

*Corresponding author

Correspondence to vignesh@iifpt.edu.in

Editor Information

Editors and Affiliations

Department of Academics and Human Resource Development

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T)

(An Institute of National Importance)

Ministry of Food Processing Industries (MoFPI), Govt. of India

Thanjavur, Tamil Nadu, India. Pin Code – 613005

Dr. S. Vignesh

Dr. N. Baskaran

Dr. V. Eyarkai Nambi

Dr. M. Loganathan

Rights and permissions

To request permission, please contact Skyfox Publishing Group

Copyright Information

© 2023 The Author(s), under exclusive license to Skyfox Publishing Group

About this Chapter

Bilna, J., Bhavadharani, M., Srinivasan, K., Baskaran, N., & Vignesh, S. (2023). Prospective Research and Technological Advancements in Food and Health Sciences. In S. Vignesh, Baskaran, N., Nambi, V., Loganthan, M (Ed.), Metabolites of Lactic Acid Bacteria (LAB): Production, Formulation and Potential applications in Food Industries: Skyfox Publishing Group. https://doi.org/10.22573/spg.023.978-93-90357-07-9/6

Published Date

14 June 2023