Investigation of Microbe-Metal Interactions: A study on the Effect of Biofilm Communities from Seafood Waste on Aluminium Alloy

Author : Lavanya M#, M. Bhavadharani#, R. Karthikeyan, N. Baskaran and S. Vignesh*
Mail Id : vignesh@iifpt.edu.in

Abstract

Biofilms imply major challenges for the food industry because the microbial biofilms form on various surfaces, including plastic, rubber, glass, metal alloys, and even on food products, within a few minutes, followed by mature biofilms developing within a few days. It can cause damage to the water distribution system, foul the equipment, and contaminate products and food. To understand microbe-metal interactions, this research has been carried out to give new perspectives on creating biofilm-free food processing systems using microorganisms from seafood waste. In this study, aluminium (Al) metal alloys were submerged in solid and liquid seafood waste for 15 days, and the amount of biofilm formation was assessed at every 5 days interval. SEM and confocal fluorescent microscopy were used to analyze and characterise biofilm impact on the Al alloys. Ninety-six strains were isolated from meat waste through pure culture technique using selective media. Further, from the meat waste immersed in aluminium alloys, after 5 days a total of 25 biofilm-forming bacterial strains were isolated and partially identified, and the EPS production was also determined. Further research is required to address the control of biofilm formation.

Keywords

Seafood waste Aluminium alloy Biofilm-forming strains Metal-microbe interaction

References

1. Avila-Novoa, M. G., Solis-Velazquez, O. A., Guerrero-Medina, P. J., González-Gómez, J.-P., González-Torres, B., Velázquez-Suárez, N. Y., Martínez-Chávez, L., Martínez-Gonzáles, N. E., De la Cruz-Color, L., Ibarra-Velázquez, L. M., Cardona-López, M. A., Robles-García, M. Á., & Gutiérrez-Lomelí, M. (2022). Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1001700


2. Beech, I. B., & Sunner, J. (2004). Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology, 15(3), 181–186. https://doi.org/10.1016/j.copbio.2004.05.001


3. Briand, J.-F., Djeridi, I., Jamet, D., Coupé, S., Bressy, C., Molmeret, M., Le Berre, B., Rimet, F., Bouchez, A., & Blache, Y. (2012). Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling, 28(5), 453–463. https://doi.org/10.1080/08927014.2012.688957


4. Cahill, M. M. (1990). A Review Virulence factors in motile Aeromonas species. Journal of Applied Bacteriology, 69(1), 1–16. https://doi.org/10.1111/j.1365-2672.1990.tb02905.x


5. Callow, J. A., & Callow, M. E. (2011). Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications, 2(1), 244. https://doi.org/10.1038/ncomms1251


6. Chongdar, S., Gunasekaran, G., & Kumar, P. (2005). Corrosion inhibition of mild steel by aerobic biofilm. 50(February), 4655–4665. https://doi.org/10.1016/j.electacta.2005.02.017


7. Ciacotich, N., Kragh, K. N., Lichtenberg, M., Tesdorpf, J. E., Bjarnsholt, T., & Gram, L. (2019). In Situ Monitoring of the Antibacterial Activity of a Copper–Silver Alloy Using Confocal Laser Scanning Microscopy and pH Microsensors. Global Challenges, 3(11), 1900044. https://doi.org/10.1002/gch2.201900044


8. D.Dewbre, C. J., Soglo, Production, F., Cervantes-Godoy, J., PIN, Amegnaglo, Y. Y., Akpa, A. F., Bickel, M., Sanyang, S., Ly, S., Kuiseu, J., Ama, S., Gautier, B. P., Officer, E. S., Officer, E. S., Eberlin, R., Officer, P., Branch, P. A., Oduro-ofori, E., … Swanson, B. E. (2014). The future of food and agriculture: trends and challenges. In The future of food and agriculture: trends and challenges (Vol. 4, Issue 4).


9. Dobretsov, S., Abed, R. M. M., & Voolstra, C. R. (2013). The effect of surface colour on the formation of marine micro and macrofouling communities. Biofouling, 29(6), 617–627. https://doi.org/10.1080/08927014.2013.784279


10. Ehrlich, H. L. (1997). Microbes and metals. Applied Microbiology and Biotechnology, 48(6), 687–692. https://doi.org/10.1007/s002530051116


11. Fang, H. H. ., Xu, L.-C., & Chan, K.-Y. (2002). Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Research, 36(19), 4709–4716. https://doi.org/10.1016/S0043-1354(02)00207-5


12. Godoy-Gallardo, M., Guillem-Marti, J., Sevilla, P., Manero, J. M., Gil, F. J., & Rodriguez, D. (2016). Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering: C, 59, 524–532. https://doi.org/10.1016/j.msec.2015.10.051


13. Guillen, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J. N., Fiore, G., Gibin, M., Zanzi, A., & Martinsohn, J. T. (2019). Global seafood consumption footprint. Ambio, 48(2), 111–122. https://doi.org/10.1007/s13280-018-1060-9


14. Halder, P., Nasabi, M., Jayasuriya, N., Shimeta, J., Deighton, M., Bhattacharya, S., Mitchell, A., & Bhuiyan, M. A. (2014). An assessment of the dynamic stability of microorganisms on patterned surfaces in relation to biofouling control. Biofouling, 30(6), 695–707. https://doi.org/10.1080/08927014.2014.914177


15. Hartikainen, H., Mogensen, L., Svanes, E., & Franke, U. (2018). Food waste quantification in primary production – The Nordic countries as a case study. Waste Management, 71, 502–511. https://doi.org/10.1016/j.wasman.2017.10.026


16. Henciya, S., Vengateshwaran, T. D., Gokul, M. S., Dahms, H. U., & James, R. A. (2020). Antibacterial Activity of Halophilic Bacteria Against Drug-Resistant Microbes Associated with Diabetic Foot Infections. Current Microbiology, 77(11), 3711–3723. https://doi.org/10.1007/s00284-020-02190-1


17. Herrera, F. C., Santos, J. A., Otero, A., & Garcia-Lopez, M.-L. (2006). Occurrence of foodborne pathogenic bacteria in retail prepackaged portions of marine fish in Spain. Journal of Applied Microbiology, 100(3), 527–536. https://doi.org/10.1111/j.1365-2672.2005.02848.x


18. Igbinosa, E. O., & Beshiru, A. (2019). Antimicrobial resistance, virulence determinants, and biofilm formation of Enterococcus species from ready-to-eat seafood. Frontiers in Microbiology, 10(MAR), 1–16. https://doi.org/10.3389/fmicb.2019.00728


19. Jenifer, P., Vijay, R., Rawson, A., Baskaran, N., & Vignesh, S. (2022). Food waste as a reservoir of antibiotic resistant strains : A study on spread of ESBL linked with ABR strains from seafood waste. 11(8), 1322–1327.


20. Joshi, S. R., Kalita, D., Kumar, R., Nongkhlaw, M., & Swer, P. B. (2014). Metal–Microbe Interaction and Bioremediation. In Radionuclide Contamination and Remediation Through Plants (pp. 235–251). Springer International Publishing. https://doi.org/10.1007/978-3-319-07665-2_12


21. Kim, K. Y., & Frank, J. F. (1995). Effect of Nutrients on Biofilm Formation by Listeria monocytogenes on Stainless Steel. Journal of Food Protection, 58(1), 24–28. https://doi.org/10.4315/0362-028X-58.1.24


22. Krasowski, G., Migdał, P., Woroszyło, M., Fijałkowski, K., Chodaczek, G., Czajkowska, J., Dudek, B., Nowicka, J., Oleksy-Wawrzyniak, M., & Kwiek, B. (2021). The processing of staphylococcal biofilm images from Fluorescence and Confocal Microscopy to assess in vitro efficacy of antiseptic molecules. BioRxiv.


23. Krishnan, M., Dahms, H. U., Seeni, P., Gopalan, S., Sivanandham, V., Jin-Hyoung, K., & James, R. A. (2017). Multi metal assessment on biofilm formation in offshore environment. In Materials Science and Engineering C (Vol. 73). Elsevier B.V. https://doi.org/10.1016/j.msec.2016.12.062


24. Krishnan, M., Sivanandham, V., Hans-uwe, D., Gokul, S., Seeni, P., Gopalan, S., & James, A. (2015). Antifouling assessments on biogenic nanoparticles : A fi eld study from polluted offshore platform. MPB, 101(2), 816–825. https://doi.org/10.1016/j.marpolbul.2015.08.033


25. Krishnan, M., Subramanian, H., Dahms, H. U., Sivanandham, V., Seeni, P., Gopalan, S., Mahalingam, A., & Rathinam, A. J. (2018). Biogenic corrosion inhibitor on mild steel protection in concentrated HCl medium. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-20718-1


26. Moffitt, C. M., & Cajas-Cano, L. (2014). Blue Growth: The 2014 FAO State of World Fisheries and Aquaculture. Fisheries, 39(11), 552–553. https://doi.org/10.1080/03632415.2014.966265


27. Otto, M. (2008). Staphylococcal Biofilms (pp. 207–228). https://doi.org/10.1007/978-3-540-75418-3_10


28. Priyanka, C Y Srinivasan, K Loganathan, M Ashish, R Arunkumar, A Baskaran, N Vignesh, S. (2021). Biotransformation of food waste to starter culture biomass: An investigation of antibiotic resistance-free lactic acid bacteria from dairy and household food waste. The Pharma Innovation, SP-10(10), 601–607. https://www.thepharmajournal.com/special-issue?year=2021&vol=10&issue=10S&ArticleId=8203


29. Satuito, C. G., Shimizu, K., & Fusetani, N. (1997). Biofilm. Hydrobiologia, 358(1/3), 275–280. https://doi.org/10.1023/A:1003109625166


30. Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science and Technology, 20(9), 407–413. https://doi.org/10.1016/j.tifs.2009.01.054


31. Shikongo-Nambabi, M. N. N. N., Shoolongela, A., & Schneider, M. (2011). Control of Bacterial Contamination during Marine Fish Processing. Journal of Biology and Life Science, 3(1), 1–17. https://doi.org/10.5296/jbls.v3i1.1033


32. Unsal, T., Cansever, N., & Ilhan-Sungur, E. (2022). The influence of Ag-Cu ions on natural biofilms of variable ages: Evaluation of MIC. Bioelectrochemistry, 146, 108143. https://doi.org/10.1016/j.bioelechem.2022.108143


33. Vignesh, S., Dahms, H. U., Emmanuel, K. V., Gokul, M. S., Muthukumar, K., Kim, B. R., & James, R. A. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment, 186(3), 1875–1887. https://doi.org/10.1007/s10661-013-3501-z


34. Vignesh, S., Dahms, H. U., Kumarasamy, P., Rajendran, A., Kim, B. R., & James, R. A. (2015). Microbial Effects on Geochemical Parameters in a Tropical River Basin. Environmental Processes, 2(1), 125–144. https://doi.org/10.1007/s40710-015-0058-6


35. Vignesh, S., Dahms, H. U., Muthukumar, K., Vignesh, G., & James, R. A. (2016). Biomonitoring along the tropical southern Indian coast with multiple biomarkers. PLoS ONE, 11(12), 1–24. https://doi.org/10.1371/journal.pone.0154105


36. Vignesh, S., Muthukumar, K., & Arthur James, R. (2012). Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin, 64(4), 790–800. https://doi.org/10.1016/j.marpolbul.2012.01.015


37. Vignesh, V., Sathiyanarayanan, G., Sathishkumar, G., Parthiban, K., Sathish-Kumar, K., & Thirumurugan, R. (2015). Formulation of iron oxide nanoparticles using exopolysaccharide: evaluation of their antibacterial and anticancer activities. RSC Advances, 5(35), 27794–27804. https://doi.org/10.1039/C5RA03134F


38. Vijay, R., Srinivasan, K., Anandharaj, A., & Baskaran, N. (2021). Enhanced exopolysaccharide production from food waste as a substrate through fed-batch FMN : An exploratory investigation of fluoride resistant bacteria. The Pharma Innovation Journal, 10(10), 594–600.


39. Willey J. M. Sherwood L. Woolverton C. J. & Prescott L. M. (2008). Prescott harley and klein’s microbiology (7th ed.). McGraw-Hill Higher Education.


40. Yadav, M., Goswami, P., Paritosh, K., Kumar, M., Pareek, N., & Vivekanand, V. (2019). Seafood waste: a source for preparation of commercially employable chitin/chitosan materials. Bioresources and Bioprocessing, 6(1), 8. https://doi.org/10.1186/s40643-019-0243-y


41. Yang, S., Ngwenya, B. T., Butler, I. B., Kurlanda, H., & Elphick, S. C. (2013). Coupled interactions between metals and bacterial biofilms in porous media: Implications for biofilm stability, fluid flow and metal transport. Chemical Geology, 337–338, 20–29. https://doi.org/10.1016/j.chemgeo.2012.11.005


42. Yao, Y., & Habimana, O. (2019). Biofilm research within irrigation water distribution systems: Trends, knowledge gaps, and future perspectives. Science of The Total Environment, 673, 254–265. https://doi.org/10.1016/j.scitotenv.2019.03.464


43. Yashwant, C. P., Rajendran, V., Krishnamoorthy, S., Nagarathinam, B., Rawson, A., Anandharaj, A., & Sivanandham, V. (2022). Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Science and Biotechnology, 0123456789. https://doi.org/10.1007/s10068-022-01222-9


44. Yuan, S. J., Pehkonen, S. O., Ting, Y. P., Kang, E. T., & Neoh, K. G. (2021). Corrosion Behavior of Type 304 Stainless Steel in a Simulated Seawater-Based Medium in the Presence and Absence of Aerobic Pseudomonas NCIMB 2021 Bacteria. 3008–3020.

Acknowledgments

The authors express their sincere gratitude to National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) – Thanjavur, Thanjavur, Tamil Nadu, for providing the facilities and DST-SERB-SRG/2021/001005 for funding support to carry out the study.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

(# Equally contributed)

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Ministry of Food Processing Industries (MoFPI), Thanjavur, Tamil Nadu State – 613005

*Corresponding author

Correspondence to vignesh@iifpt.edu.in

Editor Information

Editors and Affiliations

Department of Academics and Human Resource Development

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T)

(An Institute of National Importance)

Ministry of Food Processing Industries (MoFPI), Govt. of India

Thanjavur, Tamil Nadu, India. Pin Code – 613005

Dr. S. Vignesh

Dr. N. Baskaran

Dr. V. Eyarkai Nambi

Dr. M. Loganathan

Rights and permissions

To request permission, please contact Skyfox Publishing Group

Copyright Information

© 2023 The Author(s), under exclusive license to Skyfox Publishing Group

About this Chapter

Lavanya, M., Bhavadharani, M., Karthikeyan, R., Vignesh, S., & Baskaran, N. (2023). Prospective Research and Technological Advancements in Food and Health Sciences. In S. Vignesh, Baskaran, N., Nambi, V., Loganthan, M (Ed.), Investigation of Microbe-Metal Interactions: A study on the Effect of Biofilm Communities from Seafood Waste on Aluminium Alloy: Skyfox Publishing Group. https://doi.org/10.22573/spg.023.978-93-90357-07-9/10

Published Date

14 June 2023