Biofilm Formation and Persistence in Food Industries: Perspectives on Emerging Control Strategies

Author : Madhumitha M# , R V Sundaranandam# , Gopika R, Lavanya M, N. Baskaran, S. Vignesh*
Mail Id : vignesh@iifpt.edu.in

Abstract

Microbial biofilms are complex, self-organized communities of microbes enclosed within an extracellular polymeric substances (EPS) matrix. They are ubiquitous in nature and can form on various surfaces, including those found in the food industries, such as processing equipment and food contact surfaces. Bacterial biofilm formation and growth in the food industries might be a source of food spoilage, jeopardizing food safety and its shelf-life. This review will emphasize conditions that bacteria frequently encounter in the food industry, particularly in biofilm initial attachment and development, as variables regulating biofilm formation.  The impact of biofilm in the food industries is significant, as then it causes foodborne illnesses, economic losses, and damage to brand reputation. Physiochemical properties of bacteria, Physical properties of the substratum and Environmental parameters (substratum, temperature, nutrient availability, hydrodynamic effects, oxygen concentration, effects of food composition in biofilm development, and pH) has a multidimensional impact on the development of biofilms, and frequently, their influence may be compensatory. In the meantime, important controls of these bacterial biofilms are still needed within the food industry. Several strategies have been drawn up, including biological and chemical methods. The management of microbial biofilms in the food industries requires an inclusive approach, involving the development of effective control methods, the monitoring of biofilm formation, and the implementation of good hygiene practices. To assure food quality, safety, and consumer satisfaction, it is crucial to ensure the successful control of biofilms in the food industry.

Keywords

Microbial Biofilm EPS Food industry Control Strategies Factors influencing

References

1. A. Di Pinto, L. Novello, F. Montemurro, E. Bonerba, and G. T. (2010). Occurrence of Listeria monocytogenes in ready-to-eat foods from supermarkets in Southern Italy. New Microbiol., 33(3), 249–252,. https://doi.org/http://www.ncbi.nlm.nih.gov/pubmed/20954443


2. Anand, S., Singh, D., Avadhanula, M., & Marka, S. (2014). Development and Control of Bacterial Biofilms on Dairy Processing Membranes. Comprehensive Reviews in Food Science and Food Safety, 13(1), 18–33. https://doi.org/10.1111/1541-4337.12048


3. Ansari, F. A., Jafri, H., Ahmad, I., & Abulreesh, H. H. (2017). Factors Affecting Biofilm Formation in in vitro and in the Rhizosphere. In Biofilms in Plant and Soil Health (pp. 275–290). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119246329.ch15


4. Arrebola, E., Tienda, S., Vida, C., de Vicente, A., & Cazorla, F. M. (2019). Fitness Features Involved in the Biocontrol Interaction of Pseudomonas chlororaphis With Host Plants: The Case Study of PcPCL1606. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00719


5. Atoui, A., El Khoury, A., Kallassy, M., & Lebrihi, A. (2012). Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. International Journal of Food Microbiology, 154(1–2), 59–65. https://doi.org/10.1016/j.ijfoodmicro.2011.12.022


6. Baker, J. H. (1984). Factors affecting the bacterial colonization of various surfaces in a river. Canadian Journal of Microbiology, 30(4), 511–515. https://doi.org/10.1139/m84-076


7. Baskaran, N., Anandharaj, A., Sivanandham[…], V., & Jenifer, P. (2023). Chapter -4 Optimization and Production of Potential Starter Culture and its Polysaccharide using Marine Waste as Substrate through Fed-Batch Fermentation (D. S. Vignesh, D. N. Baskaran, D. V. E. Nambi, & D. M. Loganathan (eds.)). AkiNik Publications. https://doi.org/10.22271/ed.book.1997


8. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences, 110(17). https://doi.org/10.1073/pnas.1218984110


9. Beloin, C., Roux, A., & Ghigo, J.-M. (2008). Escherichia coli Biofilms (pp. 249–289). https://doi.org/10.1007/978-3-540-75418-3_12


10. Bjarnsholt, T., Tolker-Nielsen, T., Høiby, N., & Givskov, M. (2010). Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control. Expert Reviews in Molecular Medicine, 12, e11. https://doi.org/10.1017/S1462399410001420


11. Bos, R., Mei, H. C., Gold, J., & Busscher, H. J. (2000). Retention of bacteria on a substratum surface with micro-patterned hydrophobicity. FEMS Microbiology Letters, 189(2), 311–315. https://doi.org/10.1111/j.1574-6968.2000.tb09249.x


12. Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K., Little, D., Ross, L., Handisyde, N., Gatward, I., & Corner, R. (2010). Aquaculture: global status and trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2897–2912. https://doi.org/10.1098/rstb.2010.0170


13. Bower, C. K., McGuire, J., & Daeschel, M. A. (1996). The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends in Food Science & Technology, 7(5), 152–157. https://doi.org/10.1016/0924-2244(96)81255-6


14. Bradford, C. (2011). The Use of Commercially Available Alpha-Amylase Compounds to Inhibit and Remove Staphylococcus aureus Biofilms. The Open Microbiology Journal, 5(1), 21–31. https://doi.org/10.2174/1874285801105010021


15. Bremer, P. J., Fillery, S., & McQuillan, A. J. (2006). Laboratory scale Clean-In-Place (CIP) studies on the effectiveness of different caustic and acid wash steps on the removal of dairy biofilms. International Journal of Food Microbiology, 106(3), 254–262. https://doi.org/10.1016/j.ijfoodmicro.2005.07.004


16. Briandet, R., Meylheuc, T., Maher, C., & Bellon-Fontaine, M. N. (1999). Listeria monocytogenes Scott A: Cell Surface Charge, Hydrophobicity, and Electron Donor and Acceptor Characteristics under Different Environmental Growth Conditions. Applied and Environmental Microbiology, 65(12), 5328–5333. https://doi.org/10.1128/AEM.65.12.5328-5333.1999


17. Bridier, A., Sanchez-Vizuete, P., Guilbaud, M., Piard, J.-C., Naïtali, M., & Briandet, R. (2015). Biofilm-associated persistence of food-borne pathogens. Food Microbiology, 45, 167–178. https://doi.org/10.1016/j.fm.2014.04.015


18. Brooks, J. D., & Flint, S. H. (2008). Biofilms in the food industry: problems and potential solutions. International Journal of Food Science & Technology, 43(12), 2163–2176. https://doi.org/10.1111/j.1365-2621.2008.01839.x


19. C. Shi et al. (2017). “Inhibition of Cronobacter sakazakii Virulence Factors by Citral,. Sci. Rep, 7(1), 43243. https://doi.org/10.1038/srep43243


20. Cai, W., De La Fuente, L., & Arias, C. R. (2013). Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment. Applied and Environmental Microbiology, 79(18), 5633–5642. https://doi.org/10.1128/AEM.01192-13


21. Campana, R., Casettari, L., Fagioli, L., Cespi, M., Bonacucina, G., & Baffone, W. (2017). Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. International Journal of Food Microbiology, 241, 132–140. https://doi.org/10.1016/j.ijfoodmicro.2016.10.021


22. Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., & Raposo, A. (2021). Microbial Biofilms in the Food Industry—A Comprehensive Review. International Journal of Environmental Research and Public Health, 18(4), 2014. https://doi.org/10.3390/ijerph18042014


23. Cerca, N., & Jefferson, K. K. (2008). Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiology Letters, 283(1), 36–41. https://doi.org/10.1111/j.1574-6968.2008.01142.x


24. Chagnot, C., Agus, A., Renier, S., Peyrin, F., Talon, R., Astruc, T., & Desvaux, M. (2013). In Vitro Colonization of the Muscle Extracellular Matrix Components by Escherichia coli O157:H7: The Influence of Growth Medium, Temperature and pH on Initial Adhesion and Induction of Biofilm Formation by Collagens I and III. PLoS ONE, 8(3), e59386. https://doi.org/10.1371/journal.pone.0059386


25. Chamberland, J., Messier, T., Dugat-Bony, E., Lessard, M.-H., Labrie, S., Doyen, A., & Pouliot, Y. (2019). Influence of feed temperature to biofouling of ultrafiltration membrane during skim milk processing. International Dairy Journal, 93, 99–105. https://doi.org/10.1016/j.idairyj.2019.02.005


26. Champagne, C. P., Ross, R. P., Saarela, M., Hansen, K. F., & Charalampopoulos, D. (2011). Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. International Journal of Food Microbiology, 149(3), 185–193. https://doi.org/10.1016/j.ijfoodmicro.2011.07.005


27. Chang, Y.-I., & Chang, P.-K. (2002). The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae–application of the extended DLVO theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 211(1), 67–77. https://doi.org/10.1016/S0927-7757(02)00238-8


28. Chavant, P., Martinie, B., Meylheuc, T., Bellon-Fontaine, M.-N., & Hebraud, M. (2002). Listeria monocytogenes LO28: Surface Physicochemical Properties and Ability To Form Biofilms at Different Temperatures and Growth Phases. Applied and Environmental Microbiology, 68(2), 728–737. https://doi.org/10.1128/AEM.68.2.728-737.2002


29. Chua, S. L., Liu, Y., Yam, J. K. H., Chen, Y., Vejborg, R. M., Tan, B. G. C., Kjelleberg, S., Tolker-Nielsen, T., Givskov, M., & Yang, L. (2014). Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nature Communications, 5(1), 4462. https://doi.org/10.1038/ncomms5462


30. Colagiorgi, A., Bruini, I., Di Ciccio, P. A., Zanardi, E., Ghidini, S., & Ianieri, A. (2017). Listeria monocytogenes Biofilms in the Wonderland of Food Industry. Pathogens, 6(3), 41. https://doi.org/10.3390/pathogens6030041


31. Cotter, J. J., O’Gara, J. P., Mack, D., & Casey, E. (2009). Oxygen-Mediated Regulation of Biofilm Development Is Controlled by the Alternative Sigma Factor σ B in Staphylococcus epidermidis. Applied and Environmental Microbiology, 75(1), 261–264. https://doi.org/10.1128/AEM.00261-08


32. Coughlan, L. M., Cotter, P. D., Hill, C., & Alvarez-Ordóñez, A. (2016). New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01641


33. D. Kregiel and H. Antolak. (n.d.). biofilms in the beverage industry.


34. D. Kregiel and H. Antolak. (2016). Biofilms in Beverage Industry,” in Microbial Biofilms – Importance and Applications. InTech,. https://doi.org/10.5772/62940.


35. D.Dewbre, C. J., Soglo, Production, F., Cervantes-Godoy, J., PIN, Amegnaglo, Y. Y., Akpa, A. F., Bickel, M., Sanyang, S., Ly, S., Kuiseu, J., Ama, S., Gautier, B. P., Officer, E. S., Officer, E. S., Eberlin, R., Officer, P., Branch, P. A., Oduro-ofori, E., … Swanson, B. E. (2014). The future of food and agriculture: trends and challenges. In The future of food and agriculture: trends and challenges (Vol. 4, Issue 4).


36. D’Urzo, N., Martinelli, M., Pezzicoli, A., De Cesare, V., Pinto, V., Margarit, I., Telford, J. L., & Maione, D. (2014). Acidic pH Strongly Enhances In Vitro Biofilm Formation by a Subset of Hypervirulent ST-17 Streptococcus agalactiae Strains. Applied and Environmental Microbiology, 80(7), 2176–2185. https://doi.org/10.1128/AEM.03627-13


37. da Cruz Cabral, L., Fernández Pinto, V., & Patriarca, A. (2013). Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. International Journal of Food Microbiology, 166(1), 1–14. https://doi.org/10.1016/j.ijfoodmicro.2013.05.026


38. Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid Surfactant Production Affects Biofilm Architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185(3), 1027–1036. https://doi.org/10.1128/JB.185.3.1027-1036.2003


39. Di Ciccio, P., Vergara, A., Festino, A. R., Paludi, D., Zanardi, E., Ghidini, S., & Ianieri, A. (2015). Biofilm formation by Staphylococcus aureus on food contact surfaces: Relationship with temperature and cell surface hydrophobicity. Food Control, 50, 930–936. https://doi.org/10.1016/j.foodcont.2014.10.048


40. Dobbins, J. J. (2010). Prescott’s Microbiology, Eighth Edition. Journal of Microbiology & Biology Education, 11(1). https://doi.org/10.1128/jmbe.v11.i1.154


41. Donlan, R. M. (2002). Biofilms: Microbial Life on Surfaces. Emerging Infectious Diseases, 8(9), 881–890. https://doi.org/10.3201/eid0809.020063


42. Dos Santos Ramos, M. A., Da Silva, P., Spósito, L., De Toledo, L., Bonifácio, B., Rodero, C. F., Dos Santos, K., Chorilli, M., & Bauab, T. M. (2018). Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International Journal of Nanomedicine, Volume 13, 1179–1213. https://doi.org/10.2147/IJN.S146195


43. Dudin, O., Geiselmann, J., Ogasawara, H., Ishihama, A., & Lacour, S. (2014). Repression of Flagellar Genes in Exponential Phase by CsgD and CpxR, Two Crucial Modulators of Escherichia coli Biofilm Formation. Journal of Bacteriology, 196(3), 707–715. https://doi.org/10.1128/JB.00938-13


44. Evelyn, & Silva, F. V. M. (2015). High pressure processing of milk: Modeling the inactivation of psychrotrophic Bacillus cereus spores at 38–70 °C. Journal of Food Engineering, 165, 141–148. https://doi.org/10.1016/j.jfoodeng.2015.06.017


45. Fang, K., Park, O.-J., & Hong, S. H. (2020). Controlling biofilms using synthetic biology approaches. Biotechnology Advances, 40, 107518. https://doi.org/10.1016/j.biotechadv.2020.107518


46. Fenton, M., Keary, R., McAuliffe, O., Ross, R. P., O’Mahony, J., & Coffey, A. (2013). Bacteriophage-Derived Peptidase K Eliminates and Prevents Staphylococcal Biofilms. International Journal of Microbiology, 2013, 1–8. https://doi.org/10.1155/2013/625341


47. Field, D., Gaudin, N., Lyons, F., O’Connor, P. M., Cotter, P. D., Hill, C., & Ross, R. P. (2015). A Bioengineered Nisin Derivative to Control Biofilms of Staphylococcus pseudintermedius. PLOS ONE, 10(3), e0119684. https://doi.org/10.1371/journal.pone.0119684


48. Fink, R., Oder, M., Stražar, E., & Filip, S. (2017). Efficacy of cleaning methods for the removal of Bacillus cereus biofilm from polyurethane conveyor belts in bakeries. Food Control, 80, 267–272. https://doi.org/10.1016/j.foodcont.2017.05.009


49. Fister, S., Robben, C., Witte, A. K., Schoder, D., Wagner, M., & Rossmanith, P. (2016). Influence of Environmental Factors on Phage–Bacteria Interaction and on the Efficacy and Infectivity of Phage P100. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01152


50. Flemming, H.-C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563–575. https://doi.org/10.1038/nrmicro.2016.94


51. Friedlander, A., Nir, S., Reches, M., & Shemesh, M. (2019). Preventing Biofilm Formation by Dairy-Associated Bacteria Using Peptide-Coated Surfaces. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.01405


52. Friedman, M. (2014). Chemistry and Multibeneficial Bioactivities of Carvacrol (4-Isopropyl-2-methylphenol), a Component of Essential Oils Produced by Aromatic Plants and Spices. Journal of Agricultural and Food Chemistry, 62(31), 7652–7670. https://doi.org/10.1021/jf5023862


53. Galié, S., García-Gutiérrez, C., Miguélez, E. M., Villar, C. J., & Lombó, F. (2018). Biofilms in the Food Industry: Health Aspects and Control Methods. Frontiers in Microbiology, 9. https://doi.org/10.3389/fmicb.2018.00898


54. García-Almendárez, B. E., Cann, I. K. O., Martin, S. E., Guerrero-Legarreta, I., & Regalado, C. (2008). Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms. Food Control, 19(7), 670–680. https://doi.org/10.1016/j.foodcont.2007.07.015


55. García-Gonzalo, D., & Pagán, R. (2015). Influence of Environmental Factors on Bacterial Biofilm Formation in the Food Industry: A Review. Postdoc Journal, 3(6). https://doi.org/10.14304/surya.jpr.v3n6.2


56. Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18(9), 1049–1056. https://doi.org/10.1016/j.pnsc.2008.04.001


57. Garrido, V., Vitas, A. I., & García-Jalón, I. (2009). Survey of Listeria monocytogenes in ready-to-eat products: Prevalence by brands and retail establishments for exposure assessment of listeriosis in Northern Spain. Food Control, 20(11), 986–991. https://doi.org/10.1016/j.foodcont.2008.11.013


58. Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., Nychas, G.-J., Kačániová, M., Czaczyk, K., Ölmez, H., & Simões, M. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.00841


59. Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., Desvaux, M., Renier, S., & Nychas, G.-J. (2014). Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Science, 97(3), 298–309. https://doi.org/10.1016/j.meatsci.2013.05.023


60. Gomes, I. B., Meireles, A., Gonçalves, A. L., Goeres, D. M., Sjollema, J., Simões, L. C., & Simões, M. (2018). Standardized reactors for the study of medical biofilms: a review of the principles and latest modifications. Critical Reviews in Biotechnology, 38(5), 657–670. https://doi.org/10.1080/07388551.2017.1380601


61. Gomes, L. C., Moreira, J. M. R., Teodósio, J. S., Araújo, J. D. P., Miranda, J. M., Simões, M., Melo, L. F., & Mergulhão, F. J. (2014). 96-well microtiter plates for biofouling simulation in biomedical settings. Biofouling, 30(5), 535–546. https://doi.org/10.1080/08927014.2014.890713


62. Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A., & Cotter, P. D. (2015). The Prevalence and Control of Bacillus and Related Spore-Forming Bacteria in the Dairy Industry. Frontiers in Microbiology, 6. https://doi.org/10.3389/fmicb.2015.01418


63. Guillen, J., Natale, F., Carvalho, N., Casey, J., Hofherr, J., Druon, J. N., Fiore, G., Gibin, M., Zanzi, A., & Martinsohn, J. T. (2019). Global seafood consumption footprint. Ambio, 48(2), 111–122. https://doi.org/10.1007/s13280-018-1060-9


64. Hermansson, M. (1999). The DLVO theory in microbial adhesion. Colloids and Surfaces B: Biointerfaces, 14(1–4), 105–119. https://doi.org/10.1016/S0927-7765(99)00029-6


65. Hwang, D. S., Zeng, H., Masic, A., Harrington, M. J., Israelachvili, J. N., & Waite, J. H. (2010). Protein- and Metal-dependent Interactions of a Prominent Protein in Mussel Adhesive Plaques. Journal of Biological Chemistry, 285(33), 25850–25858. https://doi.org/10.1074/jbc.M110.133157


66. Iacumin, L., Manzano, M., & Comi, G. (2016). Phage Inactivation of Listeria monocytogenes on San Daniele Dry-Cured Ham and Elimination of Biofilms from Equipment and Working Environments. Microorganisms, 4(1), 4. https://doi.org/10.3390/microorganisms4010004


67. J. T. Holah. (1992). Industrial Monitoring: Hygiene in Food Processingin Biofilms — Science and Technology. Dordrecht: Springer Netherlands, 645–659. https://doi.org/10.1007/978-94-011-1824-8_57.s


68. Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236(2), 163–173. https://doi.org/10.1111/j.1574-6968.2004.tb09643.x


69. Jessen, B., & Lammert, L. (2003). Biofilm and disinfection in meat processing plants. International Biodeterioration & Biodegradation, 51(4), 265–269. https://doi.org/10.1016/S0964-8305(03)00046-5


70. Jones, C. R., Adams, M. R., Zhdan, P. A., & Chamberlain, A. H. L. (1999). The role of surface physicochemical properties in determining the distribution of the autochthonous microflora in mineral water bottles. Journal of Applied Microbiology, 86(6), 917–927. https://doi.org/10.1046/j.1365-2672.1999.00768.x


71. K. D. Antolak H. (2015). Acetic acid bacteria ‐ taxonomy, ecology, and industrial application,. FOOD. Sci. Technol. Qua, 101, 25–30. https://doi.org/10.15193/zntj/2015/101.


72. K. M. & A. B. Kamel Chaieb, Olfa Chehab, Tarek Zmantar, Mahmoud Rouabhia. (2007). In vitro effect of pH and ethanol on biofilm formation by clinicalica-positiveStaphylococcus epidermidis strains,”. Ann. Microbiol., 431–437.


73. Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813–829. https://doi.org/10.2174/0929867033457719


74. Kaplan, J. B., Ragunath, C., Velliyagounder, K., Fine, D. H., & Ramasubbu, N. (2004). Enzymatic Detachment of Staphylococcus epidermidis Biofilms. Antimicrobial Agents and Chemotherapy, 48(7), 2633–2636. https://doi.org/10.1128/AAC.48.7.2633-2636.2004


75. Katsikogianni, M., & Missirlis, Y. (2004). Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria-material interactions. European Cells and Materials, 8, 37–57. https://doi.org/10.22203/eCM.v008a05


76. Kaur, A., Soni, S. K., Vij, S., & Rishi, P. (2021). Cocktail of carbohydrases from Aspergillus niger: an economical and eco-friendly option for biofilm clearance from biopolymer surfaces. AMB Express, 11(1), 22. https://doi.org/10.1186/s13568-021-01183-y


77. Kregiel, D., Otlewska, A., & Antolak, H. (2014). Attachment of Asaia bogorensis Originating in Fruit-Flavored Water to Packaging Materials. BioMed Research International, 2014, 1–6. https://doi.org/10.1155/2014/514190


78. Krishnan, M., Dahms, H.-U., Seeni, P., Gopalan, S., Sivanandham, V., Jin-Hyoung, K., & James, R. A. (2017). Multi metal assessment on biofilm formation in offshore environment. Materials Science and Engineering: C, 73, 743–755. https://doi.org/10.1016/j.msec.2016.12.062


79. Krishnan, M., Sivanandham, V., Hans-Uwe, D., Murugaiah, S. G., Seeni, P., Gopalan, S., & Rathinam, A. J. (2015). Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform. Marine Pollution Bulletin, 101(2), 816–825. https://doi.org/10.1016/j.marpolbul.2015.08.033


80. Krishnan, M., Subramanian, H., Dahms, H.-U., Sivanandham, V., Seeni, P., Gopalan, S., Mahalingam, A., & Rathinam, A. J. (2018). Biogenic corrosion inhibitor on mild steel protection in concentrated HCl medium. Scientific Reports, 8(1), 2609. https://doi.org/10.1038/s41598-018-20718-1


81. Kumar, C. G., & Anand, S. . (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42(1–2), 9–27. https://doi.org/10.1016/S0168-1605(98)00060-9


82. Lappin-Scott, H. M., & Bass, C. (2001). Biofilm formation: Attachment, growth, and detachment of microbes from surfaces. American Journal of Infection Control, 29(4), 250–251. https://doi.org/10.1067/mic.2001.115674


83. Lembre, P., Lorentz, C., & Di, P. (2012). Exopolysaccharides of the Biofilm Matrix: A Complex Biophysical World. In The Complex World of Polysaccharides. InTech. https://doi.org/10.5772/51213


84. Lemos, M., Mergulhão, F., Melo, L., & Simões, M. (2015). The effect of shear stress on the formation and removal of Bacillus cereus biofilms. Food and Bioproducts Processing, 93, 242–248. https://doi.org/10.1016/j.fbp.2014.09.005


85. Liu, X., Yao, H., Zhao, X., & Ge, C. (2023). Biofilm Formation and Control of Foodborne Pathogenic Bacteria. Molecules, 28(6), 2432. https://doi.org/10.3390/molecules28062432


86. López-Bucio, J., Cruz-Ramı́rez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6(3), 280–287. https://doi.org/10.1016/S1369-5266(03)00035-9


87. Lu, J., Hu, X., & Ren, L. (2022). Biofilm control strategies in food industry: Inhibition and utilization. Trends in Food Science & Technology, 123, 103–113. https://doi.org/10.1016/j.tifs.2022.03.007


88. Lu, T. K., & Collins, J. J. (2007). Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences, 104(27), 11197–11202. https://doi.org/10.1073/pnas.0704624104


89. Luu-Thi, H., Corthouts, J., Passaris, I., Grauwet, T., Aertsen, A., Hendrickx, M., & Michiels, C. W. (2015). Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores. International Journal of Food Microbiology, 197, 45–52. https://doi.org/10.1016/j.ijfoodmicro.2014.12.016


90. M. (Egypt). F. of V. M. [Corporate A. Karunasagar I.; Otta S.K.; Karunasagar I.; Agricultural Sciences Univ., Mangalore (India). Coll. of Fisheries, D. of F. M. [Corporate A. Z. U. (1996). Biofilm formation by Vibrio harveyi on surfaces. Aquaculture, 140.


91. M. N. N. N. Shikongo-Nambabi, B. Kachigunda, and S. N. V. (2010). “Evaluation of oxidising disinfectants to control vibrio biofilms in treated seawater used for fish processing,. Water SA, 36(3), 215–220.


92. Madsen, J. S., Røder, H. L., Russel, J., Sørensen, H., Burmølle, M., & Sørensen, S. J. (2016). Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environmental Microbiology, 18(8), 2565–2574. https://doi.org/10.1111/1462-2920.13335


93. Mariani, C., Oulahal, N., Chamba, J.-F., Dubois-Brissonnet, F., Notz, E., & Briandet, R. (2011). Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control, 22(8), 1357–1362. https://doi.org/10.1016/j.foodcont.2011.02.012


94. Masák, J., Čejková, A., Schreiberová, O., & Řezanka, T. (2014). Pseudomonas biofilms: possibilities of their control. FEMS Microbiology Ecology, 89(1), 1–14. https://doi.org/10.1111/1574-6941.12344


95. Mattick, A. T. R., Hirsch, A., & Berridge, N. J. (1947). FURTHER OBSERVATIONS ON AN INHIBITORY SUBSTANCE (NISIN) FROM LACTIC STREPTOCOCCI. The Lancet, 250(6462), 5–8. https://doi.org/10.1016/S0140-6736(47)90004-4


96. McLean, R. J. ., Whiteley, M., Stickler, D. J., & Fuqua, W. C. (2006). Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiology Letters, 154(2), 259–263. https://doi.org/10.1111/j.1574-6968.1997.tb12653.x


97. Mizan, M. F. R., Jahid, I. K., & Ha, S.-D. (2015). Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiology, 49, 41–55. https://doi.org/10.1016/j.fm.2015.01.009


98. Mnif, S., Jardak, M., Yaich, A., & Aifa, S. (2020). Enzyme-based strategy to eradicate monospecies Macrococcus caseolyticus biofilm contamination in dairy industries. International Dairy Journal, 100, 104560. https://doi.org/10.1016/j.idairyj.2019.104560


99. Momba, M. N. B., & Binda, M. A. (2002). Combining chlorination and chloramination processes for the inhibition of biofilm formation in drinking surface water system models. Journal of Applied Microbiology, 92(4), 641–648. https://doi.org/10.1046/j.1365-2672.2002.01556.x


100. Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42(1), 83–94. https://doi.org/10.1016/j.carbon.2003.09.022


101. Morisaki, H., & Tabuchi, H. (2009). Bacterial attachment over a wide range of ionic strengths. Colloids and Surfaces B: Biointerfaces, 74(1), 51–55. https://doi.org/10.1016/j.colsurfb.2009.06.023


102. Morris, R. L., & Schmidt, T. M. (2013). Shallow breathing: bacterial life at low O2. Nature Reviews Microbiology, 11(3), 205–212. https://doi.org/10.1038/nrmicro2970


103. Niaz, T., Shabbir, S., Noor, T., & Imran, M. (2019). Antimicrobial and antibiofilm potential of bacteriocin loaded nano-vesicles functionalized with rhamnolipids against foodborne pathogens. LWT, 116, 108583. https://doi.org/10.1016/j.lwt.2019.108583


104. Nica, I., Stan, M., Popa, M., Chifiriuc, M., Lazar, V., Pircalabioru, G., Dumitrescu, I., Ignat, M., Feder, M., Tanase, L., Mercioniu, I., Diamandescu, L., & Dinischiotu, A. (2017). Interaction of New-Developed TiO2-Based Photocatalytic Nanoparticles with Pathogenic Microorganisms and Human Dermal and Pulmonary Fibroblasts. International Journal of Molecular Sciences, 18(2), 249. https://doi.org/10.3390/ijms18020249


105. Nicolau Korres, A. M., Aquije, G. M. de F. V., Buss, D. S., Ventura, J. A., Fernandes, P. M. B., & Fernandes, A. A. R. (2013). Comparison of Biofilm and Attachment Mechanisms of a Phytopathological and Clinical Isolate of Klebsiella pneumoniae Subsp. pneumoniae. The Scientific World Journal, 2013, 1–6. https://doi.org/10.1155/2013/925375


106. Nostro, A., Cellini, L., Di Giulio, M., D’Arrigo, M., Marino, A., Blanco, A. R., Favaloro, A., Cutroneo, G., & Bisignano, G. (2012). Effect of alkaline pH on staphylococcal biofilm formation. APMIS, 120(9), 733–742. https://doi.org/10.1111/j.1600-0463.2012.02900.x


107. O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30(2), 295–304. https://doi.org/10.1046/j.1365-2958.1998.01062.x


108. Oder, M., Fink, R., Bohinc, K., & Torkar, K. G. (2017). The influence of shear stress on the adhesion capacity of Legionella pneumophila. Archives of Industrial Hygiene and Toxicology, 68(2), 109–115. https://doi.org/10.1515/aiht-2017-68-2904


109. Olanbiwoninu, A. A., & Popoola, B. M. (2023). Biofilms and their impact on the food industry. Saudi Journal of Biological Sciences, 30(2), 103523. https://doi.org/10.1016/j.sjbs.2022.103523


110. Oulahal-Lagsir, N., Martial-Gros, A., Boistier, E., Blum, L. J., & Bonneau, M. (2000). The development of an ultrasonic apparatus for the non-invasive and repeatable removal of fouling in food processing equipment. Letters in Applied Microbiology, 30(1), 47–52. https://doi.org/10.1046/j.1472-765x.2000.00653.x


111. Oulahal‐Lagsir, N., Martial‐Gros, A., Bonneau, M., & Blum, L. J. (2003). “Escherichia coli ‐milk” biofilm removal from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofouling, 19(3), 159–168. https://doi.org/10.1080/08927014.2003.10382978


112. P., K. P., Vivekanand, B., & Kundan, K. (2014). Biofilm in aquaculture production. African Journal of Microbiology Research, 8(13), 1434–1443. https://doi.org/10.5897/AJMR2013.6445


113. P Jenifer, R Vijay, Ashish Rawson, N. B. and S. V. (2022). Food waste as a reservoir of antibiotic resistant strains: A study on spread of ESBL linked with ABR strains from seafood waste. The Pharma Innovation Journal, 11(8), 1322–1327.


114. Parsek, M. R., & Greenberg, E. P. (2005). Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiology, 13(1), 27–33. https://doi.org/10.1016/j.tim.2004.11.007


115. Peñuelas-Urquides, K., Villarreal-Treviño, L., Silva-Ramírez, B., Rivadeneyra-Espinoza, L., Said-Fernández, S., & León, M. B. de. (2013). Measuring of Mycobacterium tuberculosis growth: a correlation of the optical measurements with colony forming units. Brazilian Journal of Microbiology, 44(1), 287–290. https://doi.org/10.1590/S1517-83822013000100042


116. Pérez-Ibarreche, M., Castellano, P., Leclercq, A., & Vignolo, G. (2016). Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiology Letters, 363(12). https://doi.org/10.1093/femsle/fnw118


117. Peterson, R. V., & Pitt, W. G. (2000). The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloids and Surfaces B: Biointerfaces, 17(4), 219–227. https://doi.org/10.1016/S0927-7765(99)00117-4


118. Petrova, O. E., & Sauer, K. (2012). Sticky Situations: Key Components That Control Bacterial Surface Attachment. Journal of Bacteriology, 194(10), 2413–2425. https://doi.org/10.1128/JB.00003-12


119. Petrova, O. E., & Sauer, K. (2016). Escaping the biofilm in more than one way: desorption, detachment or dispersion. Current Opinion in Microbiology, 30, 67–78. https://doi.org/10.1016/j.mib.2016.01.004


120. Priyanka, C Y Srinivasan, K Loganathan, M Ashish, R Arunkumar, A Baskaran, N Vignesh, S. (2021). Biotransformation of food waste to starter culture biomass: An investigation of antibiotic resistance-free lactic acid bacteria from dairy and household food waste. The Pharma Innovation, SP-10(10), 601–607. https://www.thepharmajournal.com/special-issue?year=2021&vol=10&issue=10S&ArticleId=8203


121. Purevdorj, B., Costerton, J. W., & Stoodley, P. (2002). Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 68(9), 4457–4464. https://doi.org/10.1128/AEM.68.9.4457-4464.2002


122. Puttamreddy, S., Cornick, N. A., & Minion, F. C. (2010). Genome-Wide Transposon Mutagenesis Reveals a Role for pO157 Genes in Biofilm Development in Escherichia coli O157:H7 EDL933. Infection and Immunity, 78(6), 2377–2384. https://doi.org/10.1128/IAI.00156-10


123. Ramkumar, M. (Ed.). (2013). On a Sustainable Future of the Earth’s Natural Resources. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-32917-3


124. Rather, M. A., Gupta, K., Bardhan, P., Borah, M., Sarkar, A., Eldiehy, K. S. H., Bhuyan, S., & Mandal, M. (2021). Microbial biofilm: A matter of grave concern for human health and food industry. Journal of Basic Microbiology, 61(5), 380–395. https://doi.org/10.1002/jobm.202000678


125. Ripolles-Avila, C., García-Hernández, N., Cervantes-Huamán, B. H., Mazaheri, T., & Rodríguez-Jerez, J. J. (2019). Quantitative and Compositional Study of Monospecies Biofilms of Spoilage Microorganisms in the Meat Industry and Their Interaction in the Development of Multispecies Biofilms. Microorganisms, 7(12), 655. https://doi.org/10.3390/microorganisms7120655


126. ROCHEX, A., GODON, J., BERNET, N., & ESCUDIE, R. (2008). Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities. Water Research, 42(20), 4915–4922. https://doi.org/10.1016/j.watres.2008.09.015


127. Rossi, C., Chaves-López, C., Serio, A., Goffredo, E., Cenci Goga, B. T., & Paparella, A. (2016). Influence of incubation conditions on biofilm formation by Pseudomonas fluorescens isolated from dairy products and dairy manufacturing plants. Italian Journal of Food Safety, 5(3). https://doi.org/10.4081/ijfs.2016.5793


128. Runyan, C. M., Carmen, J. C., Beckstead, B. L., Nelson, J. L., Robison, R. A., & Pitt, W. G. (2006). Low-frequency ultrasound increases outer membrane permeability of Pseudomonas aeruginosa. The Journal of General and Applied Microbiology, 52(5), 295–301. https://doi.org/10.2323/jgam.52.295


129. Sabater-Liesa, L., Montemurro, N., Font, C., Ginebreda, A., González-Trujillo, J. D., Mingorance, N., Pérez, S., & Barceló, D. (2019). The response patterns of stream biofilms to urban sewage change with exposure time and dilution. Science of The Total Environment, 674, 401–411. https://doi.org/10.1016/j.scitotenv.2019.04.178


130. Sankar Ganesh, P., & Rai Vittal, R. (2015). In vitro antibiofilm activity of Murraya koenigii essential oil extracted using supercritical fluid CO 2 method against Pseudomonas aeruginosa PAO1. Natural Product Research, 29(24), 2295–2298. https://doi.org/10.1080/14786419.2015.1004673


131. Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. (2002). Pseudomonas aeruginosa Displays Multiple Phenotypes during Development as a Biofilm. Journal of Bacteriology, 184(4), 1140–1154. https://doi.org/10.1128/jb.184.4.1140-1154.2002


132. Schillaci, D., Napoli, E. M., Cusimano, M. G., Vitale, M., & Ruberto, G. (2013). Origanum vulgare subsp. hirtum Essential Oil Prevented Biofilm Formation and Showed Antibacterial Activity against Planktonic and Sessile Bacterial Cells. Journal of Food Protection, 76(10), 1747–1752. https://doi.org/10.4315/0362-028X.JFP-13-001


133. Shi, C., Sun, Y., Liu, Z., Guo, D., Sun, H., Sun, Z., Chen, S., Zhang, W., Wen, Q., Peng, X., & Xia, X. (2017). Inhibition of Cronobacter sakazakii Virulence Factors by Citral. Scientific Reports, 7(1), 43243. https://doi.org/10.1038/srep43243


134. Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20(9), 407–413. https://doi.org/10.1016/j.tifs.2009.01.054


135. Shikongo-nambabi, M. N. N., Kachigunda, B., & Venter, S. N. (2010). Evaluation of oxidising disinfectants to control Vibrio biofilms in treated seawater used for fish processing Evaluation of oxidising disinfectants to control Vibrio biofilms in treated seawater used for fish processing. July 2017.


136. Silagyi, K., Kim, S.-H., Martin Lo, Y., & Wei, C. (2009). Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products. Food Microbiology, 26(5), 514–519. https://doi.org/10.1016/j.fm.2009.03.004


137. Simões, M., Simões, L. C., & Vieira, M. J. (2010). A review of current and emergent biofilm control strategies. LWT – Food Science and Technology, 43(4), 573–583. https://doi.org/10.1016/j.lwt.2009.12.008


138. Sinde, E., & Carballo, J. (2000). Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiology, 17(4), 439–447. https://doi.org/10.1006/fmic.2000.0339


139. Sofos, J. N., & Geornaras, I. (2010). Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Science, 86(1), 2–14. https://doi.org/10.1016/j.meatsci.2010.04.015


140. Sonal Patil. (2010). Efficacy of Ozone and Ultrasound for Microbial Reduction in Fruit Juice Efficacy of Ozone and Ultrasound for Microbial Reduction in Fruit Juice. Dr. Thesis, 1–274. https://doi.org/10.21427/D78W2D


141. Srey, S., Jahid, I. K., & Ha, S.-D. (2013). Biofilm formation in food industries: A food safety concern. Food Control, 31(2), 572–585. https://doi.org/10.1016/j.foodcont.2012.12.001


142. Strempel, N., Strehmel, J., & Overhage, J. (2014). Potential Application of Antimicrobial Peptides in the Treatment of Bacterial Biofilm Infections. Current Pharmaceutical Design, 21(1), 67–84. https://doi.org/10.2174/1381612820666140905124312


143. Subasinghe, R., Soto, D., & Jia, J. (2009). Global aquaculture and its role in sustainable development. Reviews in Aquaculture, 1(1), 2–9. https://doi.org/10.1111/j.1753-5131.2008.01002.x


144. Tang, X., Flint, S. H., Bennett, R. J., Brooks, J. D., & Morton, R. H. (2009). Biofilm growth of individual and dual strains of Klebsiella oxytoca from the dairy industry on ultrafiltration membranes. Journal of Industrial Microbiology & Biotechnology, 36(12), 1491–1497. https://doi.org/10.1007/s10295-009-0637-5


145. Teh, K. H., Flint, S., Palmer, J., Andrewes, P., Bremer, P., & Lindsay, D. (2014). Biofilm − An unrecognised source of spoilage enzymes in dairy products? International Dairy Journal, 34(1), 32–40. https://doi.org/10.1016/j.idairyj.2013.07.002


146. Thallinger, B., Prasetyo, E. N., Nyanhongo, G. S., & Guebitz, G. M. (2013). Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal, 8(1), 97–109. https://doi.org/10.1002/biot.201200313


147. Torres, C. E., Lenon, G., Craperi, D., Wilting, R., & Blanco, Á. (2011). Enzymatic treatment for preventing biofilm formation in the paper industry. Applied Microbiology and Biotechnology, 92(1), 95–103. https://doi.org/10.1007/s00253-011-3305-4


148. Toté, K., Horemans, T., Berghe, D. Vanden, Maes, L., & Cos, P. (2010). Inhibitory Effect of Biocides on the Viable Masses and Matrices of Staphylococcus aureus and Pseudomonas aeruginosa Biofilms. Applied and Environmental Microbiology, 76(10), 3135–3142. https://doi.org/10.1128/AEM.02095-09


149. Tresse, O., Lebret, V., Benezech, T., & Faille, C. (2006). Comparative evaluation of adhesion, surface properties, and surface protein composition of Listeria monocytogenes strains after cultivation at constant pH of 5 and 7. Journal of Applied Microbiology, 101(1), 53–62. https://doi.org/10.1111/j.1365-2672.2006.02968.x


150. Upadhyayula, V. K. K., & Gadhamshetty, V. (2010). Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: A review. Biotechnology Advances, 28(6), 802–816. https://doi.org/10.1016/j.biotechadv.2010.06.006


151. V. P. Agarwal, R K; Singh, S; Bhilegaonkar, K N; Singh. (2011). “Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes,.” Int. Food Res. J., 18(4), 1493–1498.


152. Van Houdt, R., & Michiels, C. W. (2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. Journal of Applied Microbiology, 109(4), 1117–1131. https://doi.org/10.1111/j.1365-2672.2010.04756.x


153. Vestby, L. K., Grønseth, T., Simm, R., & Nesse, L. L. (2020). Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiotics, 9(2), 59. https://doi.org/10.3390/antibiotics9020059


154. Vignesh, D. S., Baskaran, D. N., Nambi, D. V. E., & Loganathan, D. M. (Eds.). (2022). Sustainable Food Resource Management: Technological Interventions, Safety Aspects and Future Trends. AkiNik Publications. https://doi.org/10.22271/ed.book.1997


155. Vignesh, S., Dahms, H.-U., Emmanuel, K. V., Gokul, M. S., Muthukumar, K., Kim, B.-R., & James, R. A. (2014). Physicochemical parameters aid microbial community? A case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment, 186(3), 1875–1887. https://doi.org/10.1007/s10661-013-3501-z

Google Scholar


156. Vignesh, S., Dahms, H.-U., Kumarasamy, P., Rajendran, A., Kim, B.-R., & James, R. A. (2015). Microbial Effects on Geochemical Parameters in a Tropical River Basin. Environmental Processes, 2(1), 125–144. https://doi.org/10.1007/s40710-015-0058-6

Google Scholar


157. Vignesh, S., Dahms, H.-U., Muthukumar, K., Vignesh, G., & James, R. A. (2016). Biomonitoring along the Tropical Southern Indian Coast with Multiple Biomarkers. PLOS ONE, 11(12), e0154105. https://doi.org/10.1371/journal.pone.0154105

Google Scholar


158. Vignesh, S., Muthukumar, K., & Arthur James, R. (2012). Antibiotic resistant pathogens versus human impacts: A study from three eco-regions of the Chennai coast, southern India. Marine Pollution Bulletin, 64(4), 790–800. https://doi.org/10.1016/j.marpolbul.2012.01.015

Google Scholar


159. Vijay, R., Srinivasan, K., Anandharaj, A., & Baskaran, N. (2021). Enhanced exopolysaccharide production from food waste as a substrate through fed-batch FMN : An exploratory investigation of fluoride resistant bacteria. The Pharma Innovation Journal, 10(10), 594–600.


160. Villain-Simonnet, A., Milas, M., & Rinaudo, M. (2000). A new bacterial exopolysaccharide (YAS34). II. Influence of thermal treatments on the conformation and structure. Relation with gelation ability. International Journal of Biological Macromolecules, 27(1), 77–87. https://doi.org/10.1016/S0141-8130(99)00119-1


161. Wagner, M., Auer, B., Trittremmel, C., Hein, I., & Schoder, D. (2007). Survey on the Listeria Contamination of Ready-to-Eat Food Products and Household Environments in Vienna, Austria. Zoonoses and Public Health, 54(1), 16–22. https://doi.org/10.1111/j.1863-2378.2007.00982.x


162. Wang, H., Cai, L., Li, Y., Xu, X., & Zhou, G. (2018a). Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control, 91, 397–403. https://doi.org/10.1016/j.foodcont.2018.04.035


163. Wang, H., Cai, L., Li, Y., Xu, X., & Zhou, G. (2018b). Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control, 91, 397–403. https://doi.org/10.1016/j.foodcont.2018.04.035


164. Way, S. S., Thompson, L. J., Lopes, J. E., Hajjar, A. M., Kollmann, T. R., Freitag, N. E., & Wilson, C. B. (2004). Characterization of flagellin expression and its role in Listeria monocytogenes infection and immunity. Cellular Microbiology, 6(3), 235–242. https://doi.org/10.1046/j.1462-5822.2004.00360.x


165. Weber, M., Liedtke, J., Plattes, S., & Lipski, A. (2019). Bacterial community composition of biofilms in milking machines of two dairy farms assessed by a combination of culture-dependent and –independent methods. PLOS ONE, 14(9), e0222238. https://doi.org/10.1371/journal.pone.0222238


166. Wei, Q., & Ma, L. (2013). Biofilm Matrix and Its Regulation in Pseudomonas aeruginosa. International Journal of Molecular Sciences, 14(10), 20983–21005. https://doi.org/10.3390/ijms141020983


167. Wilson, L. G., Everett, L. G., & Cullen, S. J. (2018). Handbook of Vadose Zone Characterization & Monitoring (L. G. Wilson, L. G. Everett, & S. J. Cullen (Eds.)). CRC Press. https://doi.org/10.1201/9780203752524


168. Winkelströter, L. K., Gomes, B. C., Thomaz, M. R. S., Souza, V. M., & De Martinis, E. C. P. (2011). Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control, 22(8), 1404–1407. https://doi.org/10.1016/j.foodcont.2011.02.021


169. Wirtanen, G., Husmark, U., & Mattila-Sandholm, T. (1996). Microbial Evaluation of the Biotransfer Potential from Surfaces with Bacillus Biofilms after Rinsing and Cleaning Procedures in Closed Food-Processing Systems. Journal of Food Protection, 59(7), 727–733. https://doi.org/10.4315/0362-028X-59.7.727


170. Y. H. An and R. J. Friedman. (1998). “Concise Review of Mechanisms of Bacterial Adhesion,. J. Biomed. Mater., 43(10), 338–348.
171. Y. Lequette, G. Boels, M. Clarisse, and C. F. (2010). Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry,”. Biofouling, 26(4), 421–431. https://doi.org/10.1080/08927011003699535.


172. Yang, L., & Givskov, M. (2015). Chemical Biology Strategies for Biofilm Control. Microbiology Spectrum, 3(4). https://doi.org/10.1128/microbiolspec.MB-0019-2015


173. Yashwant, C. P., Rajendran, V., Krishnamoorthy, S., Nagarathinam, B., Rawson, A., Anandharaj, A., & Sivanandham, V. (2023). Antibiotic resistance profiling and valorization of food waste streams to starter culture biomass and exopolysaccharides through fed-batch fermentations. Food Science and Biotechnology, 32(6), 863–874. https://doi.org/10.1007/s10068-022-01222-9


174. Yuan, L., Hansen, M. F., Røder, H. L., Wang, N., Burmølle, M., & He, G. (2020). Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Critical Reviews in Food Science and Nutrition, 60(13), 2277–2293. https://doi.org/10.1080/10408398.2019.1632790


175. Zhang, Q.-X., Zhang, Y., Shan, H.-H., Tong, Y.-H., Chen, X.-J., & Liu, F.-Q. (2017). Isolation and identification of antifungal peptides from Bacillus amyloliquefaciens W10. Environmental Science and Pollution Research, 24(32), 25000–25009. https://doi.org/10.1007/s11356-017-0179-8


176. Zhang, W., Sileika, T. S., Chen, C., Liu, Y., Lee, J., & Packman, A. I. (2011). A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions. Biotechnology and Bioengineering, 108(11), 2571–2582. https://doi.org/10.1002/bit.23234


177. Zhu, T., Yang, C., Bao, X., Chen, F., & Guo, X. (2022). Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 5(4), 179–186. https://doi.org/10.1016/j.gaost.2022.06.003

Acknowledgments

The authors express their sincere gratitude to National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) – Thanjavur, Thanjavur, Tamil Nadu, for providing the facilities and DST-SERB-SRG/2021/001005 for funding support to carry out the study.

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

(# Equally contributed)

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur, Thanjavur – 613 005, Tamil Nadu, India

*Corresponding author.

Correspondence to vignesh@iifpt.edu.in

Editor Information

Editors and Affiliations

Department of Academics and Human Resource Development

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T)

(An Institute of National Importance)

Ministry of Food Processing Industries (MoFPI), Govt. of India

Thanjavur, Tamil Nadu, India. Pin Code – 613005

Dr. S. Vignesh

Dr. N. Baskaran

Dr. V. Eyarkai Nambi

Dr. M. Loganathan

Rights and permissions

To request permission, please contact Skyfox Publishing Group

Copyright Information

© 2023 The Author(s), under exclusive license to Skyfox Publishing Group

About this Chapter

Madhumitha, M., Sundaranandam, R. V., Gopika, R., Lavanya, M., Baskaran, N., & Vignesh, S. (2023). Prospective Research and Technological Advancements in Food and Health Sciences. In S. Vignesh, Baskaran, N., Nambi, V., Loganthan, M (Ed.), Biofilm Formation and Persistence in Food Industries: Perspectives on Emerging Control Strategies: Skyfox Publishing Group. https://doi.org/10.22573/spg.023.978-93-90357-07-9/2


Google Scholar

Published Date

14 June 2023