Technologies Applied on Value Addition of Fruits and Vegetables

Author : Lithiyal R#, Shwetha#, Chidanand D V*, N. Baskaran, S. Vignesh
Mail Id : chidanand@iifpt.edu.in

Abstract

Among the horticulture crops, fruits and vegetables are the most commonly used commodity. Moreover, it is consumed in different forms, like raw or processed, due to its health- promoting factors and nutrition attributes. Further, due to the increase in population, demand for such commodities is also on the rise, leading to more significant production, resulting in wastage during processing that causes economic, nutritional and environmental problems. Food and Agriculture Organization (FAO) reveals that 60% of the wastage is from fruits and vegetables, among all other food commodities. Furthermore, 25% to 30% of whole fruits or vegetables are processing waste. Fruits and vegetables are categorized under perishable and semi-perishable, where the utilization is limited unless processed. Moreover, some technologies play a significant role in valorizing fruits and vegetables with different processing techniques. The bioactive compounds and their nutritional benefits are made available by processing and preservation methods for utilization on extended shelf life. This chapter will briefly discuss thermal and non-thermal technologies with processing techniques that valorize fruits and vegetables.

Keywords

Novel technologies Value addition fruits and vegetables.

References

  1. Aditi Guha (2023). Edible Film from Fruit Industry Waste. Living Reference Work Entry, 1–8.

  2. Assumpção, C. F., Hermes, V. S., Pagno, C., Castagna, A., Mannucci, , Sgherri, C., Pinzino, C., Ranieri, A., Flôres, S. H., & Rios, A. D. O. (2018). Phenolic enrichment in apple skin following post-harvest fruit UV-B treatment. Postharvest Biology and Technology, 138, 37–45. https://doi.org/10.1016/j.postharvbio.2017.12.010


  3. Arquelau, P. B. de F., Silva, V. D. M., Garcia, M. A. V. T., de Araújo, R. L. B., & Fante, C. A. (2019). Characterization of edible coatings based on ripe “Prata” banana peel Food Hydrocolloids,89,570–578. https://doi.org/10.1016/j.foodhyd.2018.11.029


  4. Benjamin, O., & Gamrasni, D. (2020). Microbial, nutritional, and organoleptic quality of pomegranate juice following high-pressure homogenization and low-temperature Journal of Food Science, 85(3), 592–599. https://doi.org/10.1111/1750-3841.15032


  5. Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021).  Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70(June 2020),    105293. https://doi.org/10.1016/j.ultsonch.2020.105293.


  6. Bernaert, , Droogenbroeck, B. Van, Pamel, E. Van, & Ruyck, H. De. (2018). innovative refractance window drying technology to keep nutrient value during processing. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2018.07.029


  7. Bhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A Ultrasonics Sonochemistry, 70, 105293. https://doi.org/10.1016/j.ultsonch.2020.105293


  8. Caleb, J., Opara, U. L., & Witthuhn, C. R. (2012). Modified Atmosphere Packaging of Pomegranate Fruit and Arils: A Review. Food and Bioprocess Technology, 5(1), 15–30. https://doi.org/10.1007/s11947-011-0525-7


  9. Darré, M., Valerga, L., Ortiz Araque, L. C., Lemoine, M. L., Demkura, P. V., Vicente, A. R., & Concellón, A. (2017). Role of UV-B irradiation dose and intensity on color retention and antioxidant elicitation in broccoli florets (Brassica oleracea var. Italica). Postharvest Biology and Technology,128,76–82. https://doi.org/10.1016/j.postharvbio.2017.02.003


  10. Del juncal-Guzmán, , Hernández-Maldonado, L. M., Sánchez-Burgos, J. A., González-Aguilar, G. A., Ruiz- Valdiviezo, V. M., Tovar, J., & Sáyago-Ayerdi, S. G. (2021). In vitro gastrointestinal digestion and colonic fermentation of phenolic compounds in UV-C irradiated pineapple (Ananas comosus) snack-bars. Lwt, 138, 110636. https://doi.org/10.1016/j.lwt.2020.110636


  11. Dash, R., Pathak, S. S., & Pradhan, R. C. (2021). Improvement in novel ultrasound-assisted extraction technology of high value-added components from fruit and vegetable peels. Journal of Food Process Engineering,44(4), 1–11. https://doi.org/10.1111/jfpe.13658


  12. Fernandez, M. V., Denoya, G. I., Jagus, R. J., Vaudagna, S. R., & Agüero, M. V. (2019). Microbiological, antioxidant and physicochemical stability of a fruit and vegetable smoothie treated by high pressure processing and stored at room temperature. Lwt, 105(February), 206–210. https://doi.org/10.1016/j.lwt.2019.02.030


  13. Geeson, J. D. (1989). Modified Atmosphere Packaging of Fruits and Vegetables. Acta Horticulturae, 258, 143– 150. https://doi.org/10.17660/actahortic.1989.258.14


  14. Jafari, S., Azizi, D., Mirzaei, H., & Dehnad, D. (2016). Comparing quality characteristics of oven-dried and refractance window dried kiwifruits. Journal of Food Processing and Preservation, 40,          362–372. https://doi.org/10.1111/jfpp


  15. Jovanovic-Malinovska, R., Kuzmanova, S., & Winkelhausen, 22.E. (2015). Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetables. Ultrasonics Sonochemistry, 22, 446–453. https://doi.org/10.1016/j.ultsonch.2014.07.016


  16. Khandpur, P., & Gogate, P. R. (2015). Chemical Engineering Department , Institute of Chemical Technology ,ultrasonic sono chemistry.https://doi.org/10.1016/j.ultsonch.2015.05.008


  17. Krishna priya, Nirmal Thirunavookarasu, C. D. V. (2023). Recent advances in edible coating of food products and its legislations: A review. Journal of Agricultural and Food Research, 12.


  18. Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by- products: A review. Ultrasonics Sonochemistry, 70(August 2020),      https://doi.org/10.1016/j.ultsonch.2020.105325


  19. Kumar, V. (2019). Post Harvest Technology of Papaya Fruits & its Value Added Products – A Review. International Journal of Pure & Applied Bioscience, 7(2), 169–181. https://doi.org/10.18782/2320-7051.7363


  20. Lemus-Mondaca, R. A., Vega-Gálvez, A., & Moraga, N. O. (2011). Computational Simulation and Developments Applied to Food Thermal Processing. Food Engineering Reviews,3(3–4),121–135.31.https://doi.org/10.1007/s12393-011-9040-x


  21. Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T., & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology,90,56–62. https://doi.org/10.1016/j.postharvbio.2013.12.006


  22. Mariz-Ponte, N., Martins, S., Gonçalves, A., Correia, C. M., Ribeiro, C., Dias, M. C., & Santos, C. (2019). The potential use of the UV-A and UV-B to improve tomato quality and preference for consumers. Scientia Horticulturae, 246(August 2018), 777–784. https://doi.org/10.1016/j.scienta.2018.11.058


  23. Nindo, C. I., & Tang, J. (2006). Potential of Refractance Window Technology for Value Added Processing of Fruits and Vegetables in Developing Countries. American Society of Agricultural and Biological Engineers, 0300(06).


  24. Nindo, C. I., & Tang, J. (2007). Refractance window dehydration technology: A novel contact drying method. DryingTechnology,25(1), 37–48. https://doi.org/10.1080/07373930601152673


  25. Pallarés, N., Berrada, H., Tolosa, J., & Ferrer, E. (2021). Effect of high hydrostatic pressure (HPP) and pulsed electric field (PEF) technologies on reduction of aflatoxins in fruit juices. Lwt, 142(January). https://doi.org/10.1016/j.lwt.2021.111000


  26. Park, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109-112.https://doi.org/10.1016/j.postharvbio.2014.09.013


  27. Park, M. H., & Kim, J. G. (2015). Low-dose UV-C irradiation reduces the microbial population and preserves antioxidant levels in peeled garlic (Allium sativum L.) during storage. Postharvest Biology and Technology, 100, 109–112. https://doi.org/10.1016/j.postharvbio.2014.09.013


  28. Raghavi, L. M., Moses, J. A., & Anandharamakrishnan, C. (2018). Refractance window drying of foods: A review. Journal of Food Engineering, 222, 267–275. https://doi.org/10.1016/j.jfoodeng.2017.11.032


  29. Surjadinata, B. B., Jacobo-Velázquez, D. A., & Cisneros- Zevallos, L. (2017). UVA, UVB and UVC light enhances the biosynthesis of phenolic antioxidants in fresh-cut carrot through a synergistic effect with wounding.Molecules,22(4). https://doi.org/10.3390/molecules22040668.


  30. Szczepańska, J., Barba, F. J., Skąpska, S., & Marszałek, K. (2020). High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chemistry,307. https://doi.org/10.1016/j.foodchem.2019.125549


  31. Seymour, I. J., Burfoot, D., Smith, R. L., Cox, L. A., & Lockwood, A. (2002). Ultrasound decontamination of minimally processed fruits and vegetables. International Journal of Food Science and Technology, 37(5), 547– 557. https://doi.org/10.1046/j.1365-2621.2002.00613.x


  32. Tiecher, A., de Paula, L. A., Chaves, F. C., & Rombaldi, C. V. (2013). UV-C effect on ethylene, polyamines and the regulation of tomato fruit ripening. Postharvest Biology andTechnology,86,230–239. https://doi.org/10.1016/j.postharvbio.2013.07.016.


  33. Timmermans, R. A. H., Mastwijk, H. C., Berendsen, L. B. J. M., Nederhoff, A. L., Matser, A. M., Van Boekel, M. A. .J. S., & Nierop Groot, M. N. (2019). Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. International Journal of Food Microbiology, 298(May2018),63–73. https://doi.org/10.1016/j.ijfoodmicro.2019.02.015


  34. Vahid Baeghbali, Mehrdad Niakousari, A. F. (2015). Refractance Window drying of pomegranate juice: Quality retention and energy efficiency Vahid. LWT – Food Science and Technology.


  35. Zhang, W., & Jiang, W. (2019). UV treatment improved the quality of postharvest fruits and vegetables by inducing resistance. Trends in Food Science and Technology, 92(August),71–80.https://doi.org/10.1016/j.tifs.2019.08.01.

Acknowledgments

The authors express their sincere gratitude to National Institute of Food Technology, Entrepreneurship and Management (NIFTEM) – Thanjavur, Thanjavur, Tamil Nadu, for providing the facilities and support to carry out the study.

Author information

Authors and Affiliations

(#Equally contributed)

National Institute of Food Technology, Entrepreneurship and Management – Thanjavur (NIFTEM-T). Pudukkottai Road, Thanjavur 613005, Tamil Nadu.

*Corresponding author. Email: chidanand@iifpt.edu.in

Editor Information

Editors and Affiliations

Department of Academics and Human Resource Development

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T)

(An Institute of National Importance)

Ministry of Food Processing Industries (MoFPI), Govt. of India

Thanjavur, Tamil Nadu, India. Pin Code – 613005

Dr. S. Vignesh

Dr. N. Baskaran

Dr. M. Loganathan

Rights and permissions

To request permission, please contact Skyfox Publishing Group

Copyright Information

© 2023 The Author(s), under exclusive license to Skyfox Publishing Group

About this Chapter

Cite this chapter

Lithiyal, R., Shwetha, Chidanand, D. V., Baskaran, N., & Vignesh, S. (2023). Emerging Food and Bioscience Research on Human Health: Safety, Security and Sustainable Aspects. In S. Vignesh, Baskaran, N., Loganthan, M (Ed.), Technologies Applied on Value Addition of Fruits and Vegetables: Skyfox Publishing Group. https://doi.org/10.22573/spg.023.978-93-90357-85-7/8

Published Date

04 December 2023