Implementation of Bio Fortification Technique to Overcome Malnutrition – An Overview

Author : R. Reshma Devi1, P. Sudharsan2, M. Koperuncholan3, G. Shanmugavel4, B. Chitra5, T. Siva Vijayakumar1*
Mail Id : shiva.bloom165@gmail.com

Abstract

Delivering micronutrients to people who may not have easy access to varied meals and other micronutrient treatments is attainable and affordable through biofortification. The effectiveness of this agriculture-based approach to alleviating micronutrient deficiency through plant breeding has been shown through research initiatives. Currently, biofortified crops are grown and consumed by further than 20 million individuals living in agrarian households in developing nations.  Since the Sustainable development goals’ targets were established, it has been of the utmost importance. Malnutrition manifests itself in a variety of ways, including undernourishment, obesity and overeating, and salutary-affiliated illnesses that aren’t transmissible. important of the world’s population is affected by micronutrient deficiencies, which are shortfalls from the norm for vital minerals including zinc, iron, vitamin A, vitamin B12, and iodine. Biofortification is a likely solution to end starvation because it’s sustainable, affordable, and profitable. It’s a food-based method, and a former study has shown that it greatly raises nutrient levels. still, for biofortification to be effective, it needs to be adopted, scaled up, and used by the applicable stakeholders to meet the target set by 2030.  This chapter provides an overview of the value of biofortification to human health.

Keywords

Biofortification Micronutrient deficiency Malnutrition biofortified crops vitamin deficiency.

References

  1. Agrawal, P. K., Kohli, A., Twyman, R. M., Christou, P. (2005). Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels.  Breed.16 (3), 247–260.

  2. Ajeesh Krishna, T. P., Maharajan, T., & Antony Ceasar, S. (2023). Significance and genetic control of membrane transporters to improve phytoremediation and biofortification processes. Molecular Biology Reports, 1-11.


  3. Alloway, B. J. (2008) Zinc in soils and crop nutrition(Belgium and Paris, France: published by IZA and IFA Brussels). Available at: http://www.topsoils.co.nz/wp-content/uploads/2014/09/Zinc-in-Soils-and-Crop-Nutrition-Brian-J.-Alloway.pdf


  4. Andreini, C., Banci, L., Bertini, I., & Rosato, A. (2006). Zinc through the three domains of life. Journal of proteome research5(11), 3173-3178.


  5. Aro, A., Alfthan, G., Varo, P. (1995). Effects of supplementation of fertilizers on human selenium status in Finland. Analyst120, 841–843.


  6. Assuncao, A. G. L., Herrero, E., Lin, Y. F., Huettel, B., Talukdar, S., Smaczniak, C. (2010). Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency.  Natl. Acad. Sci. United States America107, 10296–10301.


  7. Bailey, R. L., West Jr, K. P., & Black, R. E. (2015). The epidemiology of global micronutrient deficiencies. Annals of nutrition and metabolism66(Suppl. 2), 22-33.


  8. Banuelos, G. S., Irvin, A., Ingrid, J. P., Yang, S. I., John, L. F. (2015). Selenium biofortification of broccoli and carrots grown in soil amended with se-enriched hyper accumulator stanleyapinnata. Elsevier16 (6), 603–608.


  9. Barrameda-Medina, Y., Begona, B., Marco, L., Sergio, E., Nieves, B., Diego, A., et al. (2017). Zinc biofortification improves phytochemicals and amino-acidic profile in brassica oleracea cv. bronco. Plant Science258, 45–51.


  10. Bazuin, S., Azadi, H., & Witlox, F. (2011). Application of GM crops in Sub-Saharan Africa: lessons learned from Green Revolution. Biotechnology advances29(6), 908-912.


  11. Bhardwaj, A. K., Geeta, A., Raj, K., Lamy, H., Hadi, P. A., Poonam, J., et al. (2022). Switching to nanonutrients for sustaining agroecosystems and environment: the challenges and benefits in moving up from ionic to particle feeding.  Nanobiotechnology20 (1), 1–28.


  12. Blindauer, C. A., Schmid, R. (2010). Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics2 (8), 510–529.


  13. Boonchuay, P., I.Cakmak, Rerkasem, B., Prom-U-Thai, C. (2013). Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Sci. Plant Nutr.59 (2), 180–188.


  14. Bouis, H. E. (1999). Economics of enhanced micronutrient density in food staples. Field Crops Research60(1-2), 165-173.


  15. Bouis, H. E. (2000). Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition7(16), 701-704.


  16. Bouis, H. E., Welch, R. M. (2010). Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci.50, S20–S32.


  17. Brinch-Pedersen, H., Borg, S., Tauris, B., Holm, P. B. (2007). Molecular genetic approaches to increasing mineral availability and vitamin content of cereals.  Cereal Sci.46 (3), 308–326.


  18. Bromage, S., Ganmaa, D., Rich-Edwards, J. W., Rosner, B., Bater, J., & Fawzi, W. W. (2018). Projected effectiveness of mandatory industrial fortification of wheat flour, milk, and edible oil with multiple micronutrients among Mongolian adults. PLoS One13(8), e0201230.


  19. Buturi, C. V., Coelho, S. R. M., Cannata, C., Basile, F., Giuffrida, F., Leonardi, C., et al. (2022). Iron biofortification of greenhouse cherry tomatoes grown in a soilless system. Horticulturae8 (10), 858.


  20. Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification?. Plant and soil302, 1-17.


  21. Cakmak, I. (2009). Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India.  Trace elements Med. Biol.29 (4), 281–289.


  22. Cakmak, I. (2010). Biofortification of cereals with zinc and iron through fertilization strategy. 19th World Congress Soil Science Soil Solutions Changing World5, 1–6.


  23. Cakmak, I., & Kutman, U. Á. (2018). Agronomic biofortification of cereals with zinc: a review. European journal of soil science69(1), 172-180.


  24. Cakmak, I., Kutman, U. B. (2017). Agronomic biofortification of cereals with zinc: a review.  J. Soil Sci.69 (1), 172–180.


  25. Chapagain, B. P., Wiesman, Z. (2004). Effect of nutri-Vant-Peak foliar spray on plant development, yield, and fruit quality in greenhouse tomatoes. Scientia Hortic.102 (2), 177–188.


  26. Chattha, M. U., Hassan, M. U., Khan, I., Chattha, M. B., Mahmood, A., Chattha, M. U., et al. (2017). Biofortification of wheat cultivars to combat zinc deficiency.  Plant Sci.8.


  27. Cheikh, O., Elaoud, A., Amor, H. B., Hozayn, M. (2018). Effect of permanent magnetic field on the properties of static water and germination of cucumber seeds.  J. Multidiscip. Curr. Res.6 (2), 1–9.


  28. Choukri, M., Aziz, A., Rachid, B., Omar, H. A. E., Octavian, P., Fehmi, B., et al. (2022). Zn application through seed priming improves productivity and grain nutritional quality of silage corn. Saudi J. Biol. Sci.29 (12), 103456.


  29. Cuderman, P., Kreft, I., Germ, M., Kovacevic, M., Stibilj, V. (2008). Selenium species in selenium-enriched and drought-exposed potatoes.  Agric. Food Chem.56 (19), 9114–9120.


  30. Das, J. K., Kumar, R., Salam, R. A., & Bhutta, Z. A. (2013). Systematic review of zinc fortification trials. Annals of Nutrition and Metabolism62(Suppl. 1), 44-56.


  31. De Moraes, C. C., Silveira, N. M., Mattar, G. S., Sala, F. C., Mellis, E. V., Purquerio, L. F. V. (2022). Agronomic biofortification of lettuce with zinc under tropical conditions: Zinc content, biomass production and oxidative stress. Scientia Hortic.303, 111218.


  32. Delange, F., de Benoist, B., Pretell, E., & Dunn, J. T. (2001). Iodine deficiency in the world: where do we stand at the turn of the century?. Thyroid11(5), 437-447.


  33. Dhaliwal, S. S., Vivek, S., Arvind, K. S., Janpriya, K., Vibha, V., Manmeet, K., et al. (2022). Interactive effects of molybdenum, zinc and iron on the grain yield, quality, and nodulation of cowpea (Vigna unguiculata(L.) walp.) in north-Western India.  27 (11), 3622.


  34. Dhawi, F., Datta, R., Ramakrishna, W. (2015). Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining impacted soil. Plant Physiol. Biochem.97, 390–399.


  35. Dhawi, F., Datta, R., Ramakrishna, W. (2016). Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere157, 33–41.


  36. Ding, X., Lizhong, H., Rongguang, L., Tingting, Q., Hongmei, Z., Haijun, J., et al. (2022). Zero discharge of nutrient solution to the environment in a soilless greenhouse cucumber production system. Plants11 (17), 2252.


  37. Dola, D. B., Mannan, M. A., Sarker, U., Mamun, M. A.A., Islam, T., Ercisli, S., et al. (2022). Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits Glycine max.  Plant Science13, 992535.


  38. Eckhardt, U., Marques, A. M., Buckhout, T. J. (2011). Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol. Biol.45, 437–448.


  39. Fahad, S., Hussain, S., Saud, S., Hassan, S., Shan, D., Chen, Y., et al. (2015). Grain cadmium and zinc concentrations in maize influenced by genotypic variations and zinc fertilization. Clean Soil Air Water43 (10), 1433–1440.


  40. Farooq, M., Cheema, Z. A., Wahid, A. (2012). Seed priming with boron improves growth and yield of fine grain aromatic rice. Plant Growth Regul.68 (2), 189–201.


  41. Farooq, M., Usman, M., Nadeem, F., Rehman, H. U., Wahid, A., Basra, S. M. A., et al. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop Pasture Sci.70 (9), 731–771.


  42. Gholami, S., Dehaghi, M. A., Rezazadeh, A., Naji, A. M. (2022). Seed germination and physiological responses of quinoa to selenium priming under drought stress. Bragantia. 81, e0722.


  43. Giacosa, A., Faliva, M. A., Perna, S., Minoia, C., Ronchi, A., Rondanelli, M. (2014). Selenium fortification of an Italian rice cultivar viafoliar fertilization with sodium selenate and its effects on human serum selenium levels and on erythrocyte glutathione peroxidase activity. Nutrients 6 (3), 1251–1261.


  44. Gilani, G. S., & Nasim, A. (2007). Impact of foods nutritionally enhanced through biotechnology in alleviating malnutrition in developing countries. Journal of AOAC International90(5), 1440-1444.


  45. Gillespie, S., Hodge, J., Yosef, S., & Pandya-Lorch, R. (Eds.). (2016). Nourishing millions: stories of change in nutrition. Intl Food Policy Res Inst.


  46. Gómez-Galera, S., Rojas, E., Sudhakar, D., Zhu, C., Pelacho, A. M., Capell, T., & Christou, P. (2010). Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic research19, 165-180.


  47. Gould, J. (2017). Nutrition: A world of insecurity. Nature544(7651), S6-S7.


  48. Graham, R. D., Welch, R. M., Saunders, D. A., Ortiz-Monasterio, I., Bouis, H. E., Bonierbale, M. (2007). Nutritious subsistence food systems.  Agron.92, 1–74.


  49. Gruda, N. (2009). Do soilless culture systems have an influence on product quality of vegetables?  Appl. Bot. Food Qual.82, 141–147.


  50. Guo, J. X., Feng, X. M., Hu, X. Y., Tian, G. L., Ling, N., Wang, J. H., et al. (2016). Effects of soil zinc availability, nitrogen fertilizer rate and zinc fertilizer application method on zinc biofortification of rice.  Agric. Sci.154 (4), 584–597.


  51. Gupta, R. K., Gangoliya, S. S., & Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of food science and technology52, 676-684.


  52. Harris, D., Rashid, A., Miraj, G., Arif, M., Yunas, M. (2008). “On-farm” seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil306, 3–10.


  53. Hawkes, C. (2017). Global nutrition report 2017: Nourishing the SDGs. Development Initiatives.


  54. He, W., Shohag, M. J. I., Wei, Y., Feng, Y., Yang, X. (2013). Iron concentration, bioavailability, and nutritional quality of polished rice are affected by different forms of foliar iron fertilizer. Food Chem.141 (4), 4122–4126.


  55. Hell, R., & Stephan, U. W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta216, 541-551.


  56. Hess, S. Y., & King, J. C. (2009). Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food and nutrition bulletin30(1_suppl1), S60-S78.


  57. Hirschi, K. D. (2009). Nutrient biofortification of food crops.  Rev. Nutr.29, 401–421.


  58. Hotz, C. (2009). The potential to improve zinc status through biofortification of staple food crops with zinc. Food and Nutrition Bulletin30(1_suppl1), S172-S178.


  59. Johnson, S., Lauren, J., Welch, R., Duxbury, J. (2005). A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal.  Agric.41 (4), 427–448.


  60. Joy, E. J., Stein, A. J., Young, S. D., Ander, E. L., Watts, M. J., & Broadley, M. R. (2015). Zinc-enriched fertilisers as a potential public health intervention in Africa. Plant and Soil389, 1-24.


  61. Khattak, S. G., Dominy, P. J., Ahmad, W. (2015). Effect of zn as soil addition and foliar application on yield and protein content of wheat in alkaline soil.  Natl. Sci. Found.43 (4), 303–312.


  62. Khedr, E., Hamed, S. A., Elbeih, E., El-Shereef, H., Ahmad, Y., & Ahmed, S. (2008). Iron states and cognitive abilities in young adults: neuropsychological and neurophysiological assessment. European archives of psychiatry and clinical neuroscience258, 489-496.


  63. Khush, G. S., Lee, S., Cho, J. I., & Jeon, J. S. (2012). Biofortification of crops for reducing malnutrition. Plant biotechnology reports6, 195-202.


  64. Kim, S. A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J. M., Ecker, J. R. (2006). Localization of iron in arabidopsis seed requires the vacuolar membrane transporter VIT1. Science314, 1295–1298.


  65. King, J. C., Brown, K. H., Gibson, R. S., Krebs, N. F., Lowe, N. M., Siekmann, J. H., & Raiten, D. J. (2015). Biomarkers of Nutrition for Development (BOND)—zinc review. The Journal of nutrition146(4), 858S-885S.


  66. Kruger, C., Berkowitz, O., Stephan, U. W., Hell, R. (2002). A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of ricinus communis l.  Biol. Chem.277, 25062–25069.


  67. Kyriacou, M. C., Rouphael, Y., Di, F., Kyratzis, A., Serio, F., Renna, M., et al. (2016). Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol.57, 103–115.


  68. Landini, M., Gonzali, S., Perata, P. (2011). Iodine biofortification in tomato.  Plant Nutr. Soil Sci.174 (3), 480–486.


  69. Lata-Tenesaca, L. F., de Mello Prado, R., Ajila-Celi, G. E., da Silva, D. L., Junior, J. S.P., Mattiuz, B. H. (2023). Iron biofortification in quinoa: effect of iron application methods on nutritional quality, anti-nutrient composition, and grain productivity. Food Chem.404, 134573.


  70. Lennox, A. M. (2017). Nutrition and Infant/Child Development. Public Health Nutrition, 137.


  71. Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., et al. (2016). “Seed priming: New comprehensive approaches for an old empirical technique,” in New challenges in seed biology–basic and translational research driving seed technology(London, UK: Intech Open).


  72. Mabesa, R. L., Impa, S. M., Grewal, D., Johnson-Beebout, S. E. (2013). Contrasting grain-zn response of biofortification rice (Oryza sativa l.) breeding lines to foliar zn application. Field Crop Res.149, 223–233.


  73. Mahmoud, A. W. M., Amira, A. A., Hend, S. M. A. A., Leonard, L. W., Rasha, M. E. S., Ahmed, A. W., et al. (2022). Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants11 (19), 2599.


  74. Martens, D. C., Westermann, D. T. (1991). Fertilizer applications for correcting micronutrient deficiencies. Micronutrients Agric.4, 549–592.


  75. Martin, A. R., Broadley, M. R., Poblaciones, M. J. (2020). Soil and foliar zinc biofortification of broccoli: Effects on plant growth and mineral accumulation. Crop Pasture Sci.71 (5), 484–490.


  76. McGuire, S. (2015). FAO, IFAD, and WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress. Rome: FAO, 2015. Advances in Nutrition6(5), 623-624.


  77. Melash, A. A., Mengistu, D. K., Aberra, D. A. (2016). Linking agriculture with health through genetic and agronomic biofortification.  Sci.7 (5), 295–307.


  78. Murphy, D. J. (2017). “Seed treatments,” in Encyclopedia of applied plant sciences, 2nd Edititon, vol. 1 . Eds. Thomas, D., Murray, B. G., Murphy, D. J. (Amsterdam, Netherlands: Elsevier), 564–569.


  79. Murray-Kolb, L. E., & Beard, J. L. (2007). Iron treatment normalizes cognitive functioning in young women. The American journal of clinical nutrition85(3), 778-787.


  80. Muthayya, S., Rah, J. H., Sugimoto, J. D., Roos, F. F., Kraemer, K., & Black, R. E. (2013). The global hidden hunger indices and maps: an advocacy tool for action. PloS one8(6), e67860.


  81. Nandita, K., Manoj, K., Rajiv, R., Sareeta, N. (2022). Effects of foliar application of micronutrients on growth, yield and quality of sweet orange (Citrus sinensis(L.) osbeck).”. Bangladesh J. Bot. 51 (1), 57–63.


  82. Narwal, R. P., Dahiya, R. R., Malik, R. S., Kala, R. (2012). Influence of genetic variability on zinc, iron and manganese responses in wheat.  Geochemical Explor.121, 45–48.


  83. Newell-McGloughlin, M. (2008). Nutritionally improved agricultural crops. Plant Physiol.147, 939–953.


  84. Nile, S. H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M. A., Rebezov, et al. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives.  Nanobiotechnol. 20 (1), 1–31.


  85. Nooria, M., Adibiana, M., Sobhkhizia, A., Eyidozehib, K. (2014). Effect of phosphorus fertilizer and mycorrhiza on protein percent, dry weight, weight of 1000 grain in wheat.  J. Plant Anim. Environ. Sci.4 (2), 561–564.


  86. Nosheen, A., Bano, A., Ullah, F. (2011). Nutritive value of canola (Brassica napus l.) as affected by plant growth promoting rhizobacteria.  J. Lipid Sci. Technol.113 (11), 1342–1346.


  87. Oliver, M. A., & Gregory, P. J. (2015). Soil, food security and human health: a review. European Journal of Soil Science66(2), 257-276.


  88. Pahlavan-Rad, M. R., Pessarakli, M. (2009). Response of wheat plants to zinc, iron, and manganese applications and uptake and concentration of zinc, iron, and manganese in wheat grains.  Soil Sci. Plant Anal.40 (7-8), 1322–1332.


  89. Pannico, A., El-Nakhel, C., Graziani, G., C.Kyriacou, M., Giordano, M., Soteriou, G. A., et al. (2020). Selenium biofortification impacts the nutritive value, polyphenolic content, and bioactive constitution of variable microgreens genotypes. Antioxidants9, 272.


  90. Patidar, M., Mali, A. L. (2004). Effect of farmyard manure, fertility levels and biofertilizers on growth, yield and quality of sorghum (Sorghum bicolor). Indian J. Agron.2 (49), 117–120.


  91. Pellegrino, E., Bedini, S. (2014). Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum l.) by arbuscular mycorrhizal fungi. Soil Biol. Biochem.68, 429–439.


  92. Pérez-Massot, E., Banakar, R., Gómez-Galera, S., Zorrilla-López, U., Sanahuja, G., Arjó, G., … & Zhu, C. (2013). The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes & nutrition8, 29-41.


  93. Poblaciones, M. J., Rodrigo, S., Santamaria, O., Chen, Y., McGrath, S. P. (2014). Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum l.) under Mediterranean conditions.  Sci. Food Agric.94 (6), 1101–1106.


  94. Poggi, V., Arcioni, A., Filippini, P., Pifferi, P. G. (2000). Foliar application of selenite and selenate to potato (Solanum tuberosum): effect of a ligand agent on selenium content of tubers.  Agric. Food Chem.48 (10), 4749–4751.


  95. Praharaj, S., Singh, R., Singh, V. K., Chandra, R. (2019). Yield and grain zinc concentration of wheat as affected by nutri priming and foliar application of zinc.  Pharmacognosy Phytochem.8, 503–505.


  96. Premarathna, L., McLaughlin, M. J., Kirby, J. K., Hettiarachchi, G. M., Stacey, S., Chittleborough, D. J. (2012). Selenate-enriched urea granules are a highly effective fertilizer for selenium biofortification of paddy rice grain.  Agric. Food Chem.60 (23), 6037–6044.


  97. Prentice, A. M., Gershwin, M. E., Schaible, U. E., Keusch, G. T., Victora, C. G., & Gordon, J. I. (2008). New challenges in studying nutrition-disease interactions in the developing world. The Journal of clinical investigation118(4), 1322-1329.


  98. Puccinelli, M., Malorgio, F., Rosellini, I., Pezzarossa, B. (2019). Production of selenium-biofortified microgreens from selenium-enriched seeds of basil.  Sci. Food Agric.99, 5601–5605.


  99. Rahim, F. P., Rocio, C. G., Adalberto, B. M., Rosaura, S. C. L., Maginot, N. H. (2020). Agronomic biofortification with selenium in tomato crops (Solanum lycopersicum mill). Agriculture10 (10), 486–495.


  100. Raj, A. B., Raj, S. K. (2019). Seed priming: An approach towards agricultural sustainability.  Appl. Natural Sci.11, 227–234.


  101. Ram, H., Rashid, A., Zhang, W., Duarte, A. P., Phattarakul, N., Simunji, S. (2016). Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil1 (403), 389–401.


  102. Ramesh, A., Sharma, S. K., Sharma, M. P., Yadav, N., Joshi, O. P. (2014). Inoculation of zinc solubilizing bacillus aryabhattai strains for improved growth, mobilization and biofortification of zinc in soybean and wheat cultivated in vertisols of central India.  Soil Ecol.73, 87–96.


  103. Ramzani, P. M. A., Khalid, M., Naveed, M., Ahma, R., Shahid, M. (2016). Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil. Plant Physiol. Biochem.104, 284–293.


  104. Rehman, A., Farooq, M. (2016). Zinc seed coating improves the growth, grain yield and grain biofortification of bread wheat. Acta Physiologiae Plantarum38 (10), 1–10.


  105. Ros, G. H., Van Rotterdm, A. M. D., Bussink, D. W., Bindraban, P. S. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant Soil404, 99–112.


  106. Rouphael, Y., Kyriacou, M. C. (2018). Enhancing quality of fresh vegetables through salinity eustress and biofortification applications facilitated by soilless cultivation.  Plant Sci.9, 1–6.


  107. Sahin, O. (2020). Combined biofortification of soilless grown lettuce with iodine, selenium and zinc and its effect on essential and non-essential elemental composition.  Plant Nutr.44, 673–678.


  108. Sancenon, V., Puig, S., Mira, H., Thiele, D. J., Penarrubia, L. (2003). Identification of a copper transporter family in arabidopsis thaliana. Plant Mol. Biol.51, 577–587.


  109. Sandstead, H. H. (2013). Human zinc deficiency: discovery to initial translation. Advances in nutrition4(1), 76-81.


  110. Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., et al. (2017). Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere171, 710–721.


  111. Sathya, A., Vijayabharati, R., Srinivas, V., Gopalakrishnan, S. (2013). Plant growth- promoting action-bacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. Biotech6 (2), 138.


  112. Savithri, P., Perumal, R., Nagarajan, R. (1999). Soil and crop management technologies for enhancing rice production under micronutrient constraints. In Resource management in rice systems: nutrients. (Dordrecht: Springer), 121–135.


  113. Scott, S. P., & Murray-Kolb, L. E. (2016). Iron status is associated with performance on executive functioning tasks in nonanemic young women. The Journal of nutrition146(1), 30-37.


  114. Scott, S. P., De Souza, M. J., Koehler, K., & Murray-Kolb, L. E. (2017). Combined iron deficiency and low aerobic fitness doubly burden academic performance among women attending university. The Journal of nutrition147(1), 104-109.


  115. Shenkin, A. (2006). Micronutrients in health and disease. Postgraduate medical journal82(971), 559-567.


  116. Shivay, Y. S., Prasad, R., Pal, M. (2015). Effects of source and method of zinc application on yield, zinc biofortification of grain, and zn uptake and use efficiency in chickpea (Cicer arietinum l.). Communication Soil Sci. Plant Anal.46 (17), 2191–2200.


  117. Singh, Y. P., Mann, J. S. (2007). Interaction effect of sulphur and zinc in groundnut (Arachis hypogaea) and their availability in tonk district of rajasthan. Indian J. Agron.52 (1), 70–73.


  118. Stewart, C. P., Dewey, K. G., & Ashorn, P. (2010). The undernutrition epidemic: an urgent health priority. The Lancet375(9711), 282.


  119. Tauris, B., Borg, S., Gregersen, P. L., Holm, P. B. (2009). A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling.  Exp. Bot.60, 1333–1347.


  120. Tomasi, N., Pinton, R., Dalla, L., Cortella, G., Terzano, R., Mimmo, T., et al. (2015). Trends in food science & technology new ‘solutions’ for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci. Technol.46, 267–276.


  121. Treftz, C., Omaye, S. T. (2016). Hydroponics: Potential for augmenting sustainable food production in non-arable regions.  Food Sci.46, 672–684.


  122. Uccello, E., Kauffmann, D., Calo, M., & Streissel, M. (2017). Nutrition-sensitive agriculture and food systems in practice: options for intervention. FAO.


  123. Van Der Straeten, D., Bhullar, N. K., De Steur, H., Gruissem, W., MacKenzie, D., Pfeiffer, W., et al. (2020). Multiplying the efficiency and impact of biofortification through metabolic engineering.  Commun.11 (1), 1–10.


  124. Wang, J., Mao, H., Zhao, H., Huang, D., Wang, Z. (2012). Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in loess plateau, China. Field Crops Res.135, 89–96.


  125. Waqas, M., Korres, N. E., Khan, M. D., Nizami, A., Deeba, F., Ali, I., et al. (2019). Priming and pretreatment of seeds and seedlings(Singapore: Springer), ISBN: ISBN 9789811386251.


  126. Wei, Y., Shohag, M. J., Yang, X. (2012). Biofortification and bioavailability of rice grain zinc as affected by different forms of foliar zinc fertilization. PloS One7 (9), e45428.


  127. Weingartner, L. (2004). The concept of food and nutrition security. Background Paper n. 1 in International Training Course. Food and nutrition security.


  128. White, P. J., & Brown, P. (2010). Plant nutrition for sustainable development and global health. Annals of botany105(7), 1073-1080.


  129. White, P. J., Broadley, M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets -iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol.182, 49–84.


  130. White, P. J., Thompson, J. A., Wright, G., Rasmussen, S. K. (2017). Biofortifying Scottish potatoes with zinc. Plant Sci.411 (1), 151–165.


  131. Wiesner-Reinhold, M., Schreiner, M., Baldermann, S., Schwarz, D., Hanschen, F. S., Kipp, A. P., et al. (2017). Mechanisms of selenium enrichment and measurement in brassicaceous vegetables, and their application to human health.  Plant Sci.8, 1365.


  132. Xiao, Z., Lester, G. E., Luo, Y., Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens.  Agric. Food Chem.60 (31), 7644–7651.


  133. Xu, J., Hu, Q. (2004). Effect of foliar application of selenium on the antioxidant activity of aqueous and ethanolic extracts of selenium-enriched rice.  Agric. Food Chem.52 (6), 1759–1763.


  134. Yang, F., Chen, L., Hu, Q., Pan, G. (2003). Effect of the application of selenium on selenium content of soybean and its products.  Trace Element Res.93 (1-3), 249–256.


  135. Yang, S. H., Moran, D. L., Jia, H. W., Bicar, E. H., Lee, M., Scott, M. P. (2002). Expression of a synthetic porcine α-lactalbumin gene in the kernels of transgenic maize. Transgenic Res.11 (1), 11–20.


  136. Yang, X. W., Tian, X. H., Lu, X. C., Cao, Y. X., & Chen, Z. H. (2011). Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture91(13), 2322-2328.


  137. Yasin, M., El Mehdawi, A. F., Jahn, C. E., Anwar, A., Turner, M. F., Faisal, M. (2015b). Seleniferous soils as a source for production of selenium-enriched foods and potential of bacteria to enhance plant selenium uptake. Plant Soil386, 385–394.


  138. Yilmaz, A., Ekiz, H., Torun, B. I., Gultekin, S., Bagci, S. A., Cakmak, I. (1997). Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils.  Plant Nutr.20 (4-5), 461–471.


  139. Yuan, L. L., Yang, C., Quin, L. V. (2013). Effects of iron and zinc foliar applications on rice plants and their grain accumulation and grain nutritional quality.  Sci. Food Agric.93 (2), 254–261.


  140. Zhang, W. H., Zhou, Y. C., Dibley, K. E., Tyerman, S. D., Furbank, R. T., Patrick, J. W. (2007). Nutrient loading of developing seeds.  Plant Biol.34, 314–331.


  141. Zhang, Y. Q., Pang, L. L., Yan, P., Liu, D. Y., Zhang, W., Yost, R. (2013). Zinc fertilizer placement affects zinc content in maize plant. Plant Soil372, 81–92.


  142. Zhang, Y. Q., Sun, Y. X., Ye, Y. L., Karim, M. R., Xue, Y. F., Yan, P., et al. (2012). Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crops Res.125, 1–7.


  143. Zou, C. Q., Zhang, Y. Q., Rashid, A., Ram, H., Savasli, E., Arisoy, R. Z., et al. (2012). Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil 361 (1), 119–130.

Acknowledgments

Not announced

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

1Department of Biotechnology Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Trichy, Tamil Nadu, India

2Department of Forestry, Nagaland University (A Central University), Lumami, Nagaland, India

3Department of Botany, Srimad Andavan Arts and Science College, Trichy, Tamil Nadu, India

4Department of Humanities and Social Sciences, Puducherry Technological University, Puducherry, India

5Department of Biotechnology, Srimad Andavan Arts and Science College, Trichy, Tamil Nadu, India

*Corresponding author. Email: shiva.bloom165@gmail.com

Editor Information

Editors and Affiliations

Department of Academics and Human Resource Development

National Institute of Food Technology, Entrepreneurship and Management, Thanjavur (NIFTEM-T)

(An Institute of National Importance)

Ministry of Food Processing Industries (MoFPI), Govt. of India

Thanjavur, Tamil Nadu, India. Pin Code – 613005

Dr. S. Vignesh

Dr. N. Baskaran

Dr. M. Loganathan

Rights and permissions

To request permission, please contact Skyfox Publishing Group

Copyright Information

© 2023 The Author(s), under exclusive license to Skyfox Publishing Group

About this Chapter

Cite this chapter

Reshma Devi, R., Sudharsan, P., Koperuncholan, M., Shanmugavel, G., Chitra, B., & Siva Vijayakumar, T. (2023). Emerging Food and Bioscience Research on Human Health: Safety, Security and Sustainable Aspects. In S. Vignesh, Baskaran, N., Loganthan, M (Ed.), Implementation of Biofortification technique to overcome malnutrition – An overview: Skyfox Publishing Group. https://doi.org/10.22573/spg.023.978-93-90357-85-7/10

Published Date

04 December 2023