Sterols and Phytosterols: A Review

Authors

  • Maria M Frigola Department of Food Science and Engineering, University of Galati, Romania

Keywords:

FAME, Saturated and unsaturated fats

Abstract

Different classes of gelators molecules have been generating interest in recent years due to their specific nature and to their oil structuring capacity. To meet a particular food product’s requirement, oil structuring agents or oleogelators should be capable of producing gel systems with a certain level of tailoring proficiency, which will allow them to serve as feasible alternatives as fat substitute drivers. Food engineering perceives that the principles of food formulation should always comprise food safety and quality concepts without disregarding consumer acceptance as a priority when developing a novel food product. It is thus extremely challenging to meet all criteria stating that in order to serve as an agent for oil structuring, these alternatives should be food grade, affordable, nonreactive with other ingredients, versatile, and prone to tailoring features. Within the design of novel food products, underestimating these considerations is certainly a recipe for disaster, since new food systems should offer very similar sensory perceptions for consumers in addition to healthier benefits.

References

Ayompe, L.M., Schaafsma, M., and Egoh, B.N. (2021). Toward sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. Journal of Cleaner Production 278: 123914. doi: 10.1016/j.jclepro.2020.123914.

Bin Sintang, M.D. et al. (2017). Oil structuring properties of monoglycerides and phytosterols mixtures. European Journal of Lipid Science and Technology 119 (3). doi: 10.1002/ejlt.201500517.

Bin Sintang, M.D. et al. (2020). Modulating the crystallization of phytosterols with monoglycerides inthe binary mixture systems: Mixing behavior and eutectic formation. Chemistry and Physics of Lipids Elsevier 230 (April): 104912. doi: 10.1016/j.chemphyslip.2020.104912.

Bot, A. (2018). Phytosterols. Encyclopedia of Food Chemistry 225228. doi: 10.1016/B978008100596 5.216260.

Bot, A. and Agterof, W.G.M. (2006). Structuring of edible oils by mixtures of Y—oryzanol with ^—sitosterol or related phytosterols. JAOCS, Journal of the American Oil Chemists’ Society 83 (6): 513521. doi: 10.1007/s1174600612347. Wiley.

Bot, A., den Adel, R., Roijers, E.C., and Regkos, C. (2009). Effect of sterol type on structure of tubules in sterol + Yoryzanolbased organogels. Food Biophysics 4 (4): 266272. doi: 10.1007/ s1148300991249.

Bot, A., den Adel, R., and Heussen, P.C.M. (2010). Effect of water on selfassembled tubules in ^—sitosterol + Y—oryzanol—based organogels. Journal of Physics. Conference Series 247 (1): 12025. Available at: http://stacks.iop.org/17426596/247/i=1/a=012025.

Bot, A., Den Adel, R., and Roijers, E.C. (2008). Fibrils of Y—oryzanol + ^—sitosterol in edible oil organogels. JAOCS, Journal of the American Oil Chemists’ Society 85 (12): 11271134. doi: 10.1007/ s11746—008—1298—7.

Bot, A. and Floter, E. (2013). Application of edible oils. Edible Oil Processing 223249. doi: 10.1002/9781118535202.ch8. Wiley Online Books.

Bot, A., Veldhuizen, Y.S.J., den Adel, R., and Roijers, E.C. (2009). Non—TAG structuring of edible oils and emulsions. Food Hydrocolloids 23 (4): 11841189. doi: 10.1016/j.foodhyd.2008.06.009. Elsevier Ltd.

Calligaris, S., Mirolo, G., Da Pieve, S., Arrighetti, G., and Nicoli, M.C. (2014). Effect of oil type on formation, structure and thermal properties of Y—oryzanol and |3—sitosterol—based organogels. Food Biophysics 9 (1): 6975. doi: 10.1007/s11483—013—9318—z.

Cantrill, R. (2008). Phytosterols, phytostanols and their esters. Chemical and Technical Assessment (CTA), Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/ fileadmin/templates/agns/pdf/jecfa/cta/69/Phytosterols.pdf (accessed 29 April 2022).

Carter, C., Finley, J., Fry, J., Jackson, D., and Willis, L. (2007). Palm oil markets and future supply. European Journal of Lipid Science and Technology 109 (4): 307314. doi: 10.1002/ejlt.200600256.

Chen, X.W. et al. (2019). Engineering phytosterol—based oleogels for potential application assustainable petrolatum replacement. RSC Advances Royal Society of Chemistry 10 (1): 244252. doi: 10.1039/ c9ra06950j.

A novel method of producing a microcrystalline ^—sitosterol suspension in oil. European Journal of Pharmaceutical Sciences 15 (3): 261269. doi: 10.1016/s0928—0987(01)00223—8.

Claycamp, D.L. et al. (2014) (12) United States Patent. 2(12).

Dalkas, G., Matheson, A.B., Vass, H., Gromov, A., Lloyd, G.O., Koutsos, V., Clegg, P.S., and Euston, S.R. (2018). Molecular interactions behind the self—assembly and microstructure of mixed sterol organogels. Langmuir 34 (29): 86298638. doi: 10.1021/acs.langmuir.8b01208. American Chemical Society.

Duffy, N., Blonk, H.C.G., Beindorff, C.M., Cazade, M., Bot, A., and Duchateau, G.S.M.J.E. (2009). Organogel—based emulsion systems, micro—structural features and impact on in vitro digestion. JAOCS, Journal of the American Oil Chemists’ Society 86 (8): 733741. doi: 10.1007/s11746—009—1405—4.

Espert, M., Hernandez, M.J., Sanz, T., and Salvador, A. (2021). Reduction of saturated fat in chocolate by using sunflower oil—hydroxypropyl methylcellulose based oleogels. Food Hydrocolloids 120 (April). doi: 10.1016/j.foodhyd.2021.106917.

European Food Safety Authority (2012). Scientific Opinion on the substantiation of a health claim related to 3 g / day plant sterols / stanols and lowering blood LDL cholesterol and reduced risk of (coronary) heart disease pursuant to Article 19 of Regulation (EC). EFSA Journal 10 (5): 2693. doi: 10.2903/j.efsa.2012.2693.

Fayaz, G., Goli, S.A.H., Kadivar, M., Valoppi, F., Barba, L., Calligaris, S., and Nicoli, M.C. (2017). Potential application of pomegranate seed oil oleogels based on monoglycerides, beeswax and propolis wax as partial substitutes of palm oil in functional chocolate spread. LWT 86: 523529. doi: 10.1016/j.lwt.2017.08.036.

Fernandes, P. and Cabral, J.M.S. (2007). Phytosterols: Applications and recovery methods. Bioresource Technology 98 (12): 23352350. doi: 10.1016/j.biortech.2006.10.006.

Floter, E., Wettlaufer, T., Conty, V., and Scharfe, M. (2021). Oleogelstheir applicability and methods of characterization. Molecules (Basel, Switzerland) 26: 6. doi: 10.3390/molecules26061673.

Franco, D., Martins, A.J., LopezPedrouso, M., Purrinos, L., Cerqueira, M.A., Vicente, A.A., Pastrana, L.M., Zapata, C., and Lorenzo, J.M. (2019). Strategy toward replacing pork backfat with a linseed oleogel in Frankfurter sausages and its evaluation on physicochemical, nutritional, and sensory characteristics. Foods 8 (9): 366. doi: 10.3390/foods8090366.

Franco, D., Martins, A.J., LopezPedrouso, M., Cerqueira, M.A., Purrinos, L., Pastrana, L.M., Vicente, A.A., Zapata, C., Lorenzo, J.M. (2020). Evaluation of linseed oil oleogels to partially replace pork backfat in fermented sausages. Journal of the Science of Food and Agriculture 100 (1): 218224. doi: 10.1002/jsfa.10025.

Gao, Y., Li, M., Zhang, L., Wang, Z., Yu, Q., and Han, L. (2021). Preparation of rapeseed oil oleogels based on beeswax and its application in beef heart patties to replace animal fat. LWT 149 (February): 111986. doi: 10.1016/j.lwt.2021.111986. Elsevier Ltd.

Himawan, C., Starov, V.M., and Stapley, A.G. (2006). Thermodynamic and kinetic aspects of fat crystallization. Advances in Colloid and Interface Science 122 (13): 333. doi: 10.1016/j. cis.2006.06.016.

Jesus, S.P., Grimaldi, R., and Hense, H. (2010). Recovery of Y—oryzanol from rice bran oil byproduct using supercritical fluid extraction. The Journal of Supercritical Fluids 55 (1): 149155. doi: 10.1016/j. supflu.2010.08.004.

EFSA Journal (2016). Risks for human health related to the presence of 3 and 2 mono chloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal 14 (5). doi: 10.2903/j.efsa.2016.4426.

Kayathi, A., Chakrabarti, P.P., BonfimRocha, L., CardozoFilho, L., Bollampalli, A., and Jegatheesan, V. (2021). Extraction of YOryzanol from defatted rice bran using supercritical carbon dioxide (SCCO2): process optimisation of extract yield, scaleup and economic analysis. Process Safety and Environmental Protection 148: 179188. doi: 10.1016/j.psep.2020.09.067.

Kouzounis, D., Lazaridou, A., and Katsanidis, E. (2017). Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science 130: 3846. doi: 10.1016/j.meatsci.2017.04.004.

Lemus, C., Angelis, A., Halabalaki, M., and Skaltsounis, A.L. (2014). vOryz,anol. An Attractive Bioactive Component from Rice Bran., Wheat and Rice in Disease Prevention and Health. Elsevier. doi: 10.1016/B9780124017160.000325.

Maniet, G., Jacquet, N., and Richel, A. (2019). Recovery of sterols from vegetable oil distillate by enzymatic and nonenzymatic processes. Comptes Rendus Chimie 22 (4): 347353. doi: 10.1016/j. crci.2019.01.004.

Martins, A.J., Lorenzo, J.M., Franco, D., Pateiro, M., Dommguez, R., Munekata, P.E.S., Pastrana, L.M., Vicente, A.A., Cunha, R., and Cerqueira, M.A. (2020). Characterization of enriched meatbased pate manufactured with oleogels as fat substitutes. Gels 6 (2): 114. doi: 10.3390/gels6020017.

Martins, A.J., Cerqueira, F., Vicente, A.A., Cunha, R.L., Pastrana, L.M., and Cerqueira, M.A. (2022). Gelation behavior and stability of multicomponent sterolbased oleogels. Gels 8 (1): 37. doi: 10.3390/gels8010037.

Martins, A.J., Cerqueira, M.A., Pastrana, L.M., Cunha, R.L., and Vicente, A.A. (2019). Sterolbased oleogels’ characterization envisioning food applications. Journal of the Science of Food and Agriculture 99 (7): 33183325. doi: 10.1002/jsfa.9546. Wiley.

Martins, A.J., Lorenzo, J.M., Franco, D., Vicente, A.A., Cunha, R.L., Pastrana, L.M., Quinones, J., and Cerqueira, M.A. (2019). Omega3 and polyunsaturated fatty acidsenriched hamburgers using sterolbased oleogels. European Journal of Lipid Science and Technology 121 (11): 1900111. doi: 10.1002/ejlt.201900111. Wiley.

Martins, A.J., Vicente, A.A., Cunha, R.L., and Cerqueira, M.A. (2018). Edible oleogels: An opportunity for fat replacement in foods. Food & Function 9 (2): 758773. doi: 10.1039/c7fo01641g. Royal Society of Chemistry.

Matheson, A., Dalkas, G., Mears, R., Euston, S.R., and Clegg, P.S. (2018). Stable emulsions of droplets in a solid edible organogel matrix. Soft Matter 14 (11): 20442051. doi: 10.1039/c8sm00169c. Royal Society of Chemistry.

Matheson, A.B., Dalkas, G., Gromov, A., Euston, S.R., and Clegg, P.S. (2017). The development of phytosterollecithin mixed micelles and organogels. Food & Function 8 (12): 45474554. doi: 10.1039/C7FO01271C. Royal Society of Chemistry.

Narayan, A.V., Barhate, R.S., and Raghavarao, K.S.M.S. (2006). Extraction and purification of oryzanol from rice bran oil and rice bran oil soapstock. JAOCS, Journal of the American Oil Chemists’ Society 83 (8): 663670. doi: 10.1007/s1174600650212.

Okuro, P.K., MalfattiGasperini, A., Vicente, A.A., and Cunha, R.L. (2018). Lecithin and phytosterols based mixtures as hybrid structuring agents in different organic phases. Food Research International 111 (March): 168177. doi: 10.1016/j.foodres.2018.05.022. Elsevier.

Pinto, T.C., Martin, A.J., Pastrana, L., Pereira, M.C., and Cerqueira, M.A. (2022) Waterinoleogel emulsion based on Y oryzanol and phytosterol mixtures: Challenges and its potential use for the delivery of bioactives. 9 (November 2021): 19. doi: 10.1002/aocs.12636.

Rogers, M.A. (2011). Cooperative selfassembly of cholesterol and yoryzanol composite crystals. CrystEngComm 13 (23): 7049. doi: 10.1039/c1ce05818e. The Royal Society of Chemistry.

Rogers, M.A., Strober, T., Bot, A., ToroVazquez, J.F., Stortz, T., and Marangoni, A.G. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science 2 (1): 2231. doi: 10.1016/j.ijgfs.2014.05.001.

Saleem, M. (2009). Lupeol, a novel antiinflammatory and anticancer dietary triterpene. Cancer Letters 285 (2): 109115. doi: 10.1016/j.canlet.2009.04.033.

Sawalha, H., den Adel, R., Venema, P., Bot, A., Floter, E., and van der Linden, E. (2012). Organogel¬emulsions with mixtures of ^sitosterol and Y—oryzanol: influence of water activity and type of oil phase on gelling capability. Journal of Agricultural and Food Chemistry 60 (13): 34623470. doi: 10.1021/jf300313f. American Chemical Society.

Sawalha, H., Margry, G., den Adel, R., Venema, P., Bot, A., Floter, E., and van der Linden, E. (2013). The influence of the type of oil phase on the selfassembly process of Y—oryzanol + ^sitosterol tubules in organogel systems. European Journal of Lipid Science and Technology 115 (3): 295300. doi: 10.1002/ejlt.201100395.

Scharfe, M., Ahmane, Y., Seilert, J., Keim, J., and Floter, E. (2019). On the effect of minor oil components on ^Sitosterol/Yoryzanol Oleogels. European Journal of Lipid Science and Technology 121 (8): 113. doi: 10.1002/ejlt.201800487.

Scharfe, M., Prange, D., and Floter, E. (2021). The composition of edible oils modifies psitosterol oryzanol oleogels. Part II: addition of selected minor oil components. JAOCS, Journal of the American Oil Chemists’ Society (March): 121. doi: 10.1002/aocs.12556.

Selvasekaran, P. and Chidambaram, R. (2021). Advances in formulation for the production of lowfat, fatfree, lowsugar, and sugarfree chocolates: An overview of the past decade. Trends in Food Science and Technology 113 (December 2020): 315334. doi: 10.1016/j.tifs.2021.05.008. Elsevier Ltd.

Srikaeo, K. (2014). Organic rice bran oils in health. In: Wheat and Rice in Disease Prevention and Health (ed. R.R. Watson, V.R. Preedy, and S.B.T.W. Zibadi R. in D. P. and H.), 453465. San Diego: Academic Press. doi: 10.1016/B9780124017160.000350.

Stortz, T.A., Zetzi, A.K., Barbut, S., Cattaruzza, A., and Marangoni, A.G. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology 24 (7): 151154. doi: 10.1002/lite.201200205.

Stortz, T.A. and Marangoni, A.G. (2013). Ethylcellulose solvent substitution method of preparing heat resistant chocolate. Food Research International 51 (2): 797803. doi: 10.1016/j.foodres.2013.01.059. Food Research International.

Downloads

Published

31.03.2023

Issue

Section

Review Article

How to Cite

Sterols and Phytosterols: A Review. (2023). International Journal of Agricultural and Life Sciences, 9(1), 394-398. https://skyfox.co/ijals/index.php/als/article/view/83