open access journals
open access journals

Surfactant Complex Binding to DNA Interaction Study: Controlling Hydrophobicity in β-Cyclodextrin–DNA Binding Reactions

Karuppiah Nagaraj*1Pakkirisamy Muthukumaran2 Gunasekaran Gladwin3
Published 31-12-2020

DOI

http://dx.doi.org/10.22573/spg.ijals.020.s122000102

AUTHOR AFFILIATION

1 Department of Chemistry, DMI-St-Eugene University, Lusaka, Zambia
2 Department of Biochemistry, DMI-St-Eugene University, Lusaka, Zambia
3 Department of Mathematics, DMI-St-Eugene University, Lusaka, Zambia

ABSTRACT

The interaction of cis-[Co(phen)2(TA)2](ClO4)3, a cationic surfactant complex (phen = 1-10 phenanthroline, TA= Tetradecylamine), with calf thymus DNA has been studied by physici-chemical techniques. The spectroscopic studies together with cyclic voltammetry and viscosity experiments support that the surfactant-cobalt(III) complex binds to calf thymus DNA (CT DNA) by intercalation through the aliphatic chain present in the complex into the base pairs of DNA. The presence of phenanthroline ligand with larger -frame work may also enhance intercalation. Besides the effect of binding of surfactant cobalt(III) complex to DNA in presence of -cyclodextrin has also studied. In presence of -cyclodextrin the binding occur through surface and (or) groove binding. The complex was investigated as one of the potential selective anticancer prodrugs. The complex was tested in vitro on human monolayer tumour cell lines: HepG2 (Human hepatocellular liver carcinoma) also.

Surfactant chain 2 Scheme 1. Surfactant chain buried into the cavity of b-Cyclodextrin img3 Img4  
  1. Akao T., Fukumoto T., Ihara H., Ito A. (1996). Conformational change in DNA induced by cationic bilayer membranes.; FEBS Lettt. 391: 215-218.
  2. Anderson W. F. (1998). Human gene therapy. Nature.; 392: 25-30.
  3. Arslantas, A., Devrim, A.K., Kaya, N., & Necefoglu, H. (2006). Studies on the Interaction between Zinc-Hydroxybenzoite Complex and Genomic DNA. Int. J. Mol. Sci.; 7: 111-118.
  4. Arunaguiri S., & Maiya B. G. (1996). Dipyridophenazine Complexes of Cobalt(III) and Nickel(II):  DNA-Binding and Photocleavage Studies.; Chem.; 35: 4267-4270.
  5. Baguley B. C., Lebret M. (1984). Quenching of DNA-ethidium fluorescence by amsacrine and other antitumor agents: a possible electron-transfer effect. Biochemistry.; 23: 937-943.
  6. Barreleiro P.C.A., Olofsson G., & Alexandridis P. (2000). Interaction of DNA with Cationic Vesicles:  A Calorimetric Study. J. Phys. B.; 104(32): 7795-7802.
  7. Baskic D., Popovic S., Ristic P., & Arsenijevic N.N. (2006). Analysis of cycloheximide‐induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int.; 30: 924-932.
  8. Bathaie S. Z., Moosavi-Movahedi A. A., & A. A. Saboury. (1999). Energetic and binding properties of DNA upon interaction with dodecyl trimethylammonium bromide. Nucleic Acids Research.; 27(4): 1001-1005.
  9. Bhattacharya S., & Mandal S. S. (1997). Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting. Biochim. Biophysica. ; 1323: 29-44.
  10. Bhattacharya S., & Mandal S. S. (1997). Interaction of surfactants with DNA. Role of hydrophobicity and surface charge on intercalation and DNA melting. Biochim. Biophysica Acta.; 1323:29-44.
  11. Brown J. M. (1998). Keynote address: Hypoxic cell radiosensitizers: Where next? Int. J. Radiat. Oncol. Biol. Phys.; 16(4): 987-993.
  12. Cardenas M., Wacklin H., Campbell R. A., & Nylander T. (2011). Structure of DNA–Cationic Surfactant Complexes at Hydrophobically Modified and Hydrophilic Silica Surfaces as Revealed by Neutron Reflectometry. Langmuir.; 27(20): 12506-12514.
  13. Carter M. T., Bard D. R. (1987). Voltammetric studies of the interaction of tris(1,10-phenanthroline)cobalt(III) with DNA. J. Am. Soc.; 109: 7528-7530.
  14. Carter T., Rodriguez M., & Bard A.J. (1989). Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine. J. Am. Chem. Soc.; 111: 8901-8911.
  15. Carter M. T., Rodriguez M., Bard A. J. (1989). Voltammetric studies of the interaction of metal chelates with DNA. 2. Tris-chelated complexes of cobalt(III) and iron(II) with 1,10-phenanthroline and 2,2'-bipyridine. J. Am. Chem. Soc.; 111: 8901-8911.
  16. Chaires J. B., Dattagupta N., & Crothers D. M. (1982). Studies on interaction of anthracycline antibiotics and deoxyribonucleic acid: equilibrium binding studies on the interaction of daunomycin with deoxyribonucleic acid. Biochemistry.; 21:3933-3940.
  17. Chan S., & Wong W.T. (1995). Ruthenium 1992. Coord. Chem. Rev.; 138: 219-296.
  18. Chao, H., Li, R. H., & Ji, L. N. (1999). Syntheses, characterization and third order nonlinear optical properties of the ruthenium(II) complexes containing 2-phenylimidazo[4,5-f][l,10]phenanthroline derivatives, J. Chem. Soc., Dalton Trans.; 3711-3717.
  19. Cohen , &Eisenberg H. (1969). Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers.; 8(1): 45-55.
  20. Coyle B., McCann M., Kavanagh K., Devereux M., Geraghty M. (2003). Mode of anti-fungal activity of 1,10-phenanthroline and its Cu(II), Mn(II) and Ag(I) complexes. BioMetals.; 16: 321-329.
  21. Dan N. (1997). Multilamellar Structures of DNA Complexes with Cationic Liposomes. Biophys. J.; 73: 1842-1846.
  22. Dias R. S., Magno L. M., Valente A. J. M., Das D., Das P. K., Maiti S., Miguel M. G., & Lindman B. (2008). Interaction between DNA and Cationic Surfactants: Effect of DNA Conformation and Surfactant Headgroup. Phys. Chem. B 112(460:14446-14452.
  23. Fang Y., & Yang J. (1997). Two-Dimensional Condensation of DNA Molecules on Cationic Lipid Membranes. J. Phys. B.; 101(3): 441-449.
  24. Hamaguchi , & Geiduschek E.P. (1962). The Effect of Electrolytes on the Stability of the Deoxyribonucleate Helix. J. Am. Chem. Soc.; 84(8): 1329-1338.
  25. Huyck C.L., Hirose R. S., Reyes Jr P. A. (1946). Diffusion of sulfonamides from emulsified ointment bases. Am. J. Pharm. Association.; 35(5): 129-140.
  26. Johnston D. H., & Thorp H. H. (1995). Electrochemical Measurement of the Solvent Accessibility of Nucleobases Using Electron Transfer between DNA and Metal Complexes. J. Am. Chem. Soc.; 117: 8933-8938.
  27. Kelly J. M., Tossi A. B., McConnell D. J., & OhUigin C. A (1985). Study of the interactions of some polypyridylruthenium (II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucleic Acids Res.; 13: 6017-6034.
  28. Kumar C. V., Barton J. K., & Turro N.J. (1985). Photophysics of ruthenium complexes bound to double helical DNA. J. Am. chem. soc.; 107: 5518-5523.
  29. Lakowicz J. R., & Weber G. (1984). Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry.; 12: 4164-4170.
  30. Lasic D.D., Strey H., Stuart M.C.A., Podgornik R., & Pederik P.M. (1995). The Structure of DNA−Liposome Complexes. J. Am. Chem. Soc.; 119: 832-833.
  31. Leventis R., & Silvius J.R. (1990). Interactions of mammalian cells with lipid dispersions containing novel metabolizable cationic amphiphiles.. Biochim. Biophys. Acta.; 1023: 124-132.
  32. Liang F., Wang P., Zhou X., Li T., Li Z. Y., Lin H. K., Gao D. Z., Zheng C. Y., & Wu C. T. (2004) Bioorg. Med. Chem. Lett.; 14, 1901-1904.
  33. Liu C. L., Zhou J. Y., Li Q. X., Wang L. J., Liao Z. R. & Xu H. B. (1999). DNA damage by copper (II) complexes: coordination-structural dependence of reactivities. J. Inorg. Biochem.; 75: 233-240.
  34. Liu J., Zhang H., Chen C., Deng H., Lu T., & Ji L. (2003). Interaction of macrocyclic copper(ii) complexes with calf thymus DNA: effects of the side chains of the ligands on the DNA-binding behaviors. J. Chem. Soc. Dalton Trans.; 114-119
  35. Maki N., Tanaka N. in: A.J. Bard (Ed.), (1975). Encyclopedia of Electrochemistry of the Elements, vol. 3, Marcel Dekker, New York.
  36. Marmur J. (1961). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3(2): 208-218.
  37. Matulis D., Rouzina I., & Bloomfield V.A. (2000). Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. J. Mol. Biol. Soc.; 296(4): 1053-1063.
  38. Matulis D., Rouzina I., & Bloomfield V.A. (2002). Thermodynamics of Cationic Lipid Binding to DNA and DNA Condensation:  Roles of Electrostatics and Hydrophobicity. J. Am. Chem. Soc.; 124: 7331-7342.
  39. McCann M., Geraghty M., Devereux M., O’Shea D., Mason J., & O’Sullivan L. (2000). Metal-Based Drugs.; 7: 185-189.
  40. Meidan V.M., Cohen J.S., Amariglio N., Hirsch-Lerner D., & Barenholz Y. (2000). Interaction of oligonucleotides with cationic lipids: the relationship between electrostatics, hydration and state of aggregation. Biochim. Biophys. Acta(BBA)-Biomembranes.; 1464(2): 251-261.
  41. Mel’nikov S.M., Sergeyev V.G., & Yoshikawa K. (1995). Discrete Coil-Globule Transition of Large DNA Induced by Cationic Surfactant. J. Am. Soc. ; 117: 2401-2408.
  42. Mel’nikov S.M., Sergeyev V.G., & Yoshikawa K. (1995). Transition of Double-Stranded DNA Chains between Random Coil and Compact Globule States Induced by Cooperative Binding of Cationic Surfactant. J. Am. Chem. Soc.; 117: 9951-9956.
  43. Menger F.M., & Keiper J.S. (2000). Gemini Surfactants. Angew. Int. Ed.; 39(11): 1906-1920.
  44. Menger F.M., & Littau C.A. (1991). Gemini-surfactants: synthesis and properties. J. Am. Chem. Soc.; 113(4): 1451-1452.
  45. Morgan R.J., Chatterjee S., Baker A.D., & Strekas T.C. (1991). Effects of ligand planarity and peripheral charge on intercalative binding of Ru(2,2'-bipyridine)2L2+ to calf thymus DNA. Inorg. Chem. 30(12): 2687-2692.
  46. Mosmann T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods.; 65: 55-63.
  47. Olmsted J., Kearns D. R. (1977). Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry.; 16:3647-3654.
  48. Osinsky S., Levitin I., Bubnovskaya L., Sigan A., Ganusevich I., Kovelskaya A., Valkovskaya N., Campanella L., & Wardman P. (2004). Selectivity of effects of redox-active cobalt(III) complexes on tumor tissue. Exp. Oncol.; 2004; 26: 140-144.
  49. Prager M.D., Baechtel F.S., Gordon W.C., Maullin S., & Steinberg J. (1980). A. Sanderson, in Liposomes and immunobiology, B.H. Tom, H.R. Six, Eds. Elsevier, New York, 39.
  50. Prativel G., Bernadou J., & Meunier M. (1998). DNA And RNA Cleavage by Metal Complexes. Adv. Inorg. Chem.; 45: 251-312.
  51. Rädler JO., Koltover I., Salditt T., & Safinya CR. (1997). Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science.; 275: 810–814.
  52. Reimer D.L., Zhang Y.P., Kong S., Wheeler J.J., Graham R.W., & Bally M.B. (1995). Formation of novel hydrophobic complexes between cationic lipids and plasmid DNA. Biochemistry.; 34: 12877-12883.
  53. Sasaki Y. F., Ayusawa D., & Oishi M. (1994). Construction of a normalized cDNA library by introduction of a semi-solid mRNA-cDNA hybridization system. Nucleic Acids Research.; 22(6): 987-992.
  54. Sasikala K., & Arunachalam S. (2010). Synthesis, characterization, and electron transfer reaction of some surfactant-cobalt(III) complex ions. Z. Phys. ; 141:309-316.
  55. Satyanarayana S., Dabroniak J. C., & Chaires J. B. (1992). Neither. DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry.; 31(39): 9319-9324.
  56. Satyanarayana S., Dabroniak J. C., & Chaires J. B. (1992). Neither. DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry.; 31(39): 9319-9324.
  57. Satyanaryana S., Daborusak J. C., & Chaires J. B., (1993). Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry,; 32: 2573-2584.
  58. Selim M. D., Chowdhury S. R., & Mukherjea K. K. (2007). DNA binding and nuclease activity of a one-dimensional heterometallic nitrosyl complex. I. J. Biol. Macro. Mol.; 5(1): 579-583.
  59. Senthil kumar , Arunachalam S. (2008). Synthesis, micellar properties, DNA binding and antimicrobial studies of some surfactant–cobalt(III) complexes. Biophy.Chem.; 136(2-3): 136-144.
  60. Senthil kumar R., Arunachalam S., Periasamy V.S., Paul C.P., Riyasdeen A., & Akbarsha M.A. (2009). Surfactant-cobalt(III) complexes: Synthesis, critical micelle concentration (CMC) determination, DNA binding, antimicrobial and cytotoxicity studies. J.Inorg.Biochem.; 103(1): 117-127.
  61. Sethuraman M., & Mallayan P. (1998). Spectroscopic and Voltammetric Studies on Copper Complexes of 2,9-Dimethyl-1,10-phenanthrolines Bound to Calf Thymus DNA. Inorg. Chem.; 37(4): 693-700.
  62. Spector D. L., Goldman R. D., & Leinwand L. A. (1998). Culture and biochemical Analysis of cells, In: Cell: A Laboratory Manual, 1, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  63. Thati B., Noble A., Rowan R., Creaven B. S., Walsh M., McCann M., Egan D., & Kavanagh K. (2007). Mechanism of action of coumarin and silver(I)–coumarin complexes against the pathogenic yeast Candida albicans.  Toxicology in Vitro.; 21(5): 801-808.
  64. Waring M. J. (1965). Complex formation between ethidium bromide and nucleic acids. J. Mol. ; 13(1):269-282.
  65. Waring J. (1977). Drug Action at the Molecular Level (G.C.K. Roberts, ed.). Maemillar, London.
  66. Zana R. (2002). Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv. Colloid Interface Sci.; 97(1-3): 205-253.
  67. Zana T. (2002). Dimeric (Gemini) Surfactants: Effect of the Spacer Group on the Association Behavior in Aqueous Solution. J. Colloid Interface Sci.; 248(2): 203-220.
  68. Zou, X. H., Ye, B. H., Ji, & L. N. (1999). Mono- and binuclear ruthenium(II) complexes containing a new asymmetric ligand 3-(pyrazin-2-yl-as-triazino[5,6-f] 1,10-phenanthroline: synthesis, characterization and DNA-binding properties, J. Chem. Soc., Dalton Trans.; 1423-1428.
  69. binding of novel β-cyclodextrin dimers linked with various sulfur-containing linker moieties. J. Chem. Soc. Perkin Trans.; 1:2943-2948.

ARTICLE HISTORY

Received: July 2020 / Accepted: Nov 2020 / Published: Dec 2020

COPYRIGHT

© 2020 Nagaraj, K.,  et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),whiich permits unrestricted use, distribution, and reproduction in any medium, provided the Original work is properly cited.

COMPETING INTERESTS

The authors have declared that no competing interests exist.

HOW TO CITE THIS ARTICLE

Nagaraj, K., Muthukumaran, P., & Gladwin, G. (2020). Surfactant Complex Binding to DNA Interaction Study: Controlling Hydrophobicity in β-Cyclodextrin–DNA Binding Reactions. Int J Agric Life Sci, 6(4), 318-332. doi: 10.22573/spg.ijals.020.s122000102


Cite Metrics