open access journals
open access journals

Kinetic study of surfactant cobalt (III) complexes by [Fe(CN)6 4-]: Outer-Sphere Electron-Transfer in Ionic liquids and Liposome Vesicle

Karuppiah Nagaraj*1Pakkirisamy Muthukumaran2 Gunasekaran Gladwin3
Published 31-12-2020

DOI

http://dx.doi.org/10.22573/spg.ijals.020.s122000101

AUTHOR AFFILIATION

1 Department of Chemistry, DMI-St-Eugene University, Lusaka, Zambia
2 Department of Biochemistry, DMI-St-Eugene University, Lusaka, Zambia
3 Department of Mathematics, DMI-St-Eugene University, Lusaka, Zambia

ABSTRACT

UV-Vis., absorption spectroscopy are used to monitor the electron transfer reaction between the surfactant cobalt(III) complexes, cis-[Co(ip)2(C14H29NH2)2]3+, cis-[Co(dpq)2(C14H29NH2)2]3+ and cis-[Co(dpqc)2(C14H29NH2)2]3+ (ip = imidazo[4,5-f][1,10]phenanthroline, dpq = dipyrido[3,2-d:2’-3’-f]quinoxaline, dpqc = dipyrido[3,2-a:2’,4’-c](6,7,8,9-tetrahydro)phenazine, C14H29NH2=Tetradecylamine) and [Fe(CN)6]4- ion in liposome vesicles (DPPC) and ionic liquids ((BMIM)Br) were investigated at different temperatures under pseudo first order conditions using an excess of the reductant. The reactions were found to be second order and the electron transfer is postulated as outer-sphere. The rate constant for the electron transfer reactions were found to increase with increasing concentrations of ionic liquids. The effects of hydrophobicity of the long aliphatic double chains of these surfactant complex ions into liposome vesicles on these reactions have also been studied. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. In all these media the S# values are found to be negative in direction in all the concentrations of complexes used indicative of more ordered structure of the transition state. This is consistent with a model in which the surfactant cobalt(III) complexes and Fe(CN)64- ions bind to the DPPC in the transition state. Thus, the results have been explained based on the self-aggregation, hydrophobic effect, and the reactants with opposite charge.

KI KI2    
  1. Almog, S., Litman, B.J., Wimley, W., Cohen, J., Wachtel, E.J., Barenholz, Y., Ben-Shaul A., & Lichtenberg D. (1990). States of Aggregation and Phase Transformations in Mixtures of Phosphatidylcholine and Octyl Glucoside. Biochem.; 29(19): 4582-4592.
  2. Arulsamy N., Bohle D.S., Goodson P.A., Jaeger D.A. & Reddy V.B. (2001). Synthesis, Structure, and Stereochemistry of Double-Chain Surfactant Co(III) Complexes. Inorg. Chem.; 40(5): 836-842.
  3. Babich O.A. & Gould E.S. (2002). Electron transfer. Part 148. Reactions of corrin-bound cobalt(III) with s2 metal-ion reducing centers. Inorg. Chim Acta.; 336: 80-86.
  4. Batzri S., & Korn E.D. (1973). Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta.; 298(4): 1015-1019.
  5. Benson P. & Haim A. (1965). Tetracyanoethylene Oxide. I. Preparation and Reaction with Nucleophiles. J. Am. Chem. Soc.; 1965, 87(16): 3691-3656.
  6. Blesic, M., Marques, M.H., Plechkova, N.V., Seddon, K.R., Rebelo L.P.N., & Lopes A. (2007). Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem.; 9(5): 481-490.
  7. Cameron P.J., Peter L.M., Zakeeruddin S.M., & Gratzel M. (2004). Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells. Coordination Chem Rev.; 248:1447-1453.
  8. Cannon R.D., & Gardiner, J.J. (1972). Kinetics of electron transfer: the reaction of acetatopenta-amminecobalt(III) with N-methyliminodiacetatoiron(II). J. Chem. Soc. Dalton. Trans.; 8(9): 887-890.
  9. Chonn A., & Cullis P.R. Recent advances in liposomal drug-delivery systems. (1995). Curr. Opin. Biotech.; 6:698-708.
  10. Fendler J.H. & Fendler, E.J. (1975). Catalysis in micellar and macromolecular systems, Academic Press, New York.
  11. Gaswick D., & Haim A. (1971). Direct measurement of a first-order rate constant for an elementary electron transfer step. J. Am. Chem. Soc.; 93(26): 7347-7348.
  12. Ghosh S., Barve A.C., Kumbhar A.A., Kumbhar A.S., Puranik V.G., Datar P.A., Sonawane U.B., & Joshi R.R. (2006). Synthesis, characterization, X-ray structure and DNA photocleavage by cis-dichloro bis(diimine) Co(III) complexes. J. Inorg. Biochem.; 100(3), 331-343.
  13. Hammarstrom L., Norrby T., Stenhangen G., Martensson J., Akermark B., & Almgren M. (1997). Twodimensional emission quenching and charge separation using a Ru(II)-photosensitizer assembled with membrane-bound acceptors. J. Phys. Chem. B.; 101: 7494-7504.
  14. Holder A.A, & Dasgupta T.P. (2002). Kinetics and mechanism of the reduction of the molybdatopentaamminecobalt(III) ion by aqueous sulfite and aqueous potassium hexacyanoferrate(II). Inorg. Chim. Acta.; 331(1): 279.
  15. Javadian, , Ruhi, V., Heydari, A., Asadzadeh Shahir, A., Yousefi A., & Akbari J. (2013). Self-Assembled CTAB Nanostructures in Aqueous/Ionic Liquid Systems: Effects of Hydrogen Bonding. Ind. Eng. Chem. Res.; 52(12): 4517-4526.
  16. Ji L.N., Zou X.H., Liu J.G. (2001). Shape and enantioselective interaction of Ru(II)/Co(III) polypyridyl complexes with DNA. Coordination Chem Rev.; 513: 216-217.
  17. Jwo J.J., Gaus P.L., & Haim A. (1979). Intramolecular electron transfer from pentacyanoferrate(II) to pentaamminecobalt(III) mediated by various 4,4'-bipyridines. J. Am. Chem. Soc.; 101(21): 6189-6197.
  18. Szacilowski, Eur. J., 2004, 10, 2520.
  19. Kipp E.B., & Haines R.A. (1969). Infrared studies of cis- and trans-bis(halogenoacetato)bis(ethylenediamine)-cobalt(III) complexes. Can. Chem.; 47: 1073-1078.
  20. Kristin, A., Siddharth F., & Pandey M. (2004). Surfactant Aggregation within Room-Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Langmuir.; 20(1): 33-36.
  21. Kustin K., & Epstein I.R. (1990). Systematic design of chemical oscillators. Part 56. Kinetics and mechanism of the oxidation of hexacyanoferrate(II) by aqueous bromine. J. Chem Soc. Dalton Trans.; 3: 971-975.
  22. Martinez, M.A. Pitarque and R.V. Eldik, Inorg. Chim. Acta 1997, 256, 51.
  23. Marcus R. (1967). The partial equilibrium diagram of the Fe-Ge system in the range 40-72 at. % of Ge and the crystallization of some iron germanides by chemical transport systems. Acta. Chem. Scand.; 21: 2305-2317.
  24. McBain J.W. & Heath D.C. (1950). A theory of critical micelle concentration of colloidal electrolyte solutions. J.Colloid Sci.; 9(3): 254-262.
  25. Miralles A.J., Armstrong R.E., & Haim A. (1977). The outer-sphere reductions of pyridinepentaamminecobalt(III) and pyridinepentaammineruthenium(III) by hexacyanoferrate(II). J. Am. Chem. Soc.; 99(5): 1416-1420.
  26. Miralles A.J., Szecsy A.P. & Haim A. (1982). Electron-transfer reactions of ion pairs: reductions of various substituted pyridinepentaamminecobalt(III) complexes by hexacyanoferrate(II). Inorg. Chem.; 21(2):697-699.
  27. Miralles A.J., Szecsy A.P., & Haim A. (1977). The outer-sphere reductions of pyridinepentaamminecobalt(III) and pyridinepentaammineruthenium(III) by hexacyanoferrate(II). J. Am. Chem. Soc.; 99(5): 1416-1420
  28. Miyashita O., Wolynes P.G., & Onuchic J.N. (2005). Simple Energy Landscape Model for the Kinetics of Functional Transitions in Proteins. J. Phys. Chem.; B 109(5): 1959-1969.
  29. Miyashita O., Wolynes P.G., & Onuchic J.N. (2005). Simple Energy Landscape Model for the Kinetics of Functional Transitions in Proteins. J. Phys. Chem.; B 109(5): 1959-1969.
  30. Morris M.L., & Busch D.H. (1960). Infrared Spectra Studies on the cis and trans Isomers of Diacidobis-(ethylenediamine)-cobalt(III) Complexes. J. Am. Chem. Soc., 1960, 82,
  31. Mustafina A.R., Shtyrin V.G., Zakharova L.Y., Skripacheva V.V., Zairov R.R, Soloreva S.E., Antipen I.S., & Konovalov A.I. (2007). The outer-sphere association of p-sulfonatothiacalix[4]arene with some Co(III) complexes: The effect on their redox activity in aqueous solutions. J. Incl. Phenom. Macrocycl.chem.; 59(1), 25-32.
  32. Nagaraj K., & Arunachalam S. (2012). Studies on outer-sphere electron transfer reactions of surfactant cobalt(III) complexes with iron(II) in liposome (dipalmitoylphosphotidylcholine) vesicles. Transit Metal Chem.; 37:423-429.
  33. Nagaraj K., & Arunachalam S. (2013). Synthesis and electron transfer kinetics of a surfactant-cobalt(III) complex: effects of micelles, β-cyclodextrin, and ionic liquids. Transit Metal Chem.; 38:649-657.
  34. Nagaraj K., & Arunachalam S. (2013). Synthesis, CMC determination, and outer sphere electron transfer reaction of the surfactant complex ion, cis-[Co(en)2(4CNP)(DA)]3+ with [Fe(CN)6]4-in micelles, β-cyclodextrin, and liposome dipalmidoylphosphotidylcholine) vesicles. Aust J Chem.; 66:930-937.
  35. Nagaraj K., & Arunachalam S. (2014). Kinetics of reduction of cis-bis(dodecylamine)bis(1,10-phenanthroline) cobalt(III) perchlorate and cis-bis(dodecylamine)bis(2,2’-bipyridine)cobalt(III) perchlorate by Fe(II) in dipalmitoylphosphatidylcholine vesicles. Monatshefte fur Chemie.; 145:427-433.
  36. Nagaraj K., Sakthinathan S., Velmurugan G., Venuvanalingam P., & S. Arunachalam, (2014). Influence of self-assembly on intercalative DNA binding interaction of double-chain surfactant Co(III) complexes containing imidazo[4,5-f][1,10]phenanthroline and dipyrido[3,2-d:2’-3’-f]quinoxaline ligands: experimental and theoretical study. Dalton trans.; 43:18074-18079.
  37. Paternostre, M.T., Roux M., & Rigaud J.L. (1988). Mechanisms of Membrane Protein Insertion into Liposomes during Reconstitution Procedures Involving the Use of Detergents. 1. Solubilization of Large Unilamellar Liposomes (Prepared by Reverse-Phase Evaporation) by Triton X-100, Octyl Glucoside, and Sodium Cholate. Biochem.; 27(8): 2668-2677.
  38. Pfeiffer J., Kirchner K., & Wherland S. (2001). Extensive inhibition by ion pairing in a bimolecular, outer-sphere electron transfer reaction, reduction of a cobalt clathrochelate by ferrocene in methylene chloride. Inorg. Chim. Acta.; 313(1-2), 37-42.
  39. Pignatello, R., Musumeci, T., Basile, L., Carbone C., & Puglisi, G. (2011). Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J. Pharm. Bioallied Sci.,; 3(1): 4-14.
  40. Predo-Gotor R., Jiminez R., Lopez P., Perez C., Gomez-Herrera F., & Sanchez F. (1998). Micellar effects upon the reaction between acetonitrile pentacyanoferrate(II) and Bis(ethylenediammine)(2-pyrazinecarboxylato)cobalt(III). Langmuir.; 14:1539-1543.
  41. Rillema P., Endicott J.F. & Patel R.C. (1972). Outer-sphere electron-transfer reactions of macrocyclic complexes of cobalt(III). Critical assessment of linear free energy relations. J. Am. Chem. Soc.; 94(2): 394-401.
  42. Rosen M.J. (1978). Surfactants and Interfacial Phenomena, Wiley, New York.
  43. Sang Cheon L,, Hak Soo C,, Tooru O., & Nobuhiko Y. (2004). Block-Selective Polypseudorotaxane Formation in PEI-b-PEG-b-PEI Copolymers via pH Variation. Macromolecules.; 37(20):7464-7468.
  44. Srinivasan S., Annaraj J., & Athappan P.R. (2005) Spectral and redox studies on mixed ligand complexes of cobalt(III) phenanthroline/bipyridyl and benzoylhydrazones, their DNA binding and antimicrobial activity. J Inorg Biochem.; 99: 876-882.
  45. Szecsy A.P., & Haim A. (1983) Intramolecular electron transfer from pentacyanoferrate(II) to pentaamminecobalt(III) via an imidazolate bridge. The role of distance in inner-sphere reactions. J. Am. Chem. Soc.; 103(7): 1679-1683.
  46. Tanford C. (1973). The Hydrophobic Effect: Formation of Micelles and Biological Membranes, Wiley-Interscience, New York.
  47. Tavernier HL., Barzykin AV., Tachiya M., & Fayer MD. (1998). Solvent reorganization energy and free energy change for donor/acceptor electron transfer at micelle surfaces: theory and experiment. J Phys Chem B.; 102:6078-6088
  48. Van Eldik R., Spitzer U., & Kelm H. (1982). Mechanistic information on fast reactions of transition metal complexes using rapid scan spectrophotometry. III. The acid-catalyzed aquation of a series of Co(III) carbonato complexes in aqueous solution [1]. Inorg. Chim. Acta.; 74: 149-153.
  49. Walker G.W., Geue R.J., Sargeson A.M., & Behm C.A. (2003). Surface-active cobalt cage complexes: synthesis, surface chemistry, biological activity, and redox properties. J. Chem. Soc. Dalton Trans.; 15, 2992-3001.
  50. Wang X.L., Chao H., Li H., Hong X.L., Liu Y.J., Tan L.F., & Ji L.N. (2004). DNA interactions of cobalt(III) mixed-polypyridyl complexes containing asymmetric ligands. J Inorg Biochem.; 98:1143-1150.
  51. Yamamura H., Yamada S., Kohno K., Okuda N., Araki S., Kobayashi K., Katakai R., Kano K., & Kawai M. (2003). Preparation and guest binding of novel β-cyclodextrin dimers linked with various sulfur-containing linker moieties. J. Chem. Soc. Perkin Trans.; 1:2943-2948.

ARTICLE HISTORY

Received: July 2020 / Accepted: Nov 2020 / Published: Dec 2020

COPYRIGHT

© 2020 Nagaraj, K.,  et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the Original work is properly cited.

COMPETING INTERESTS

The authors have declared that no competing interests exist.

HOW TO CITE THIS ARTICLE

Nagaraj, K., Muthukumaran, P., & Gladwin, G. (2020). Kinetic study of surfactant cobalt (III) complexes by [Fe(CN)6 4-]: Outer-Sphere Electron-Transfer in Ionic liquids and Liposome Vesicle. Int J Agric Life Sci, 6(4), 300-317. doi: 10.22573/spg.ijals.020.s1220001


Cite Metrics