Production and Characterization of Valuable Protein Hydrolysates from De-Oiled Residual Biomass-Spirulina Platensis

Chapter 4

Authors

  • VK Anand SRM University, Ramapuram, Chennai – 620 015, Tamil Nadu, India
  • G Shanthi SRM University, Ramapuram, Chennai – 620 015, Tamil Nadu, India

Keywords:

residual biomass, protein hydrolysates, functional properties, antioxidant activity

Abstract

There is growing curiosity in the exploration of novel renewable resources as alternatives for the production of protein hydrolysates (PH). Thus, the undiscovered potential of utilizing residual biomass from Spirulina, particularly after lipid extraction, for food production presents an encouraging avenue for further research. The aim of this study is to examine the technological and antioxidant properties of protein hydrolysates (PH) obtained from the leftover biomass of Spirulina. Around 70% of biomass was obtained as residue after lipid extraction. The yield and protein content of the PH from residual biomass were 48% and 78% respectively. PH had a high solubility at acidic pH-5. The emulsification power and foaming capacity of PH were 56 m2/g and 275% respectively. PH had a higher ratio of α-helix to ß-sheet (3.4) compared with the raw (1.6) and residual biomass (0.7), which indicates a high digestibility of PH. The antioxidant capacity of PH by reducing power assay, DPPH and ABTS were 80, 1746, 618 µM Trolox g-1 respectively. The findings suggest that PH could be used as a potential ingredient in food and pharmaceutical industry, thus providing a sustainable valorization to protein rich residual biomass.

References

Aiello, G., Li, Y., Boschin, G., Bollati, C., Arnoldi, A., Lammi, C., 2019. Chemical and biological characterization of Spirulina protein hydrolysate: Focus on ACE and DPP-IV activities modulation. Journal of Funct. Foods 63, 103592. http://doi.org/10.1016/j.jff.2019.103592

Aluko, R., Monu, E., 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. J Food Sci. 68, 1254-1258. https://doi.org/10.1111/j.1365-2621.2003.tb09635.x.

Alzate,M.E.,Muñoz,R.,Rogalla,F.,Fdz-Polanco,F.,Pérez-Elvira,S.I., 2014. Biochemical methane potential of microalgae biomass after lipid extraction. J. Chem. Eng. 243,405-410. https://doi.org/10.1016/j.cej.2013.07.076.

Bai, M., Qin, G., Sun, Z., Long, G., 2015. Relationship between molecular structure characteristics of feed proteins and protein in vitro digestibility and solubility. Asian Austral. J. Anim. Sci., 29, 1159-1165. https://doi.org/10.5713/ajas.15.0701.

Boki, K., Kawasaki, N., 1994. Moisture sorption characteristics of collagen fibers prepared in different acidic pH solutions. J. Colloid Interface Sci. 164, 364-369.https://www.sciencedirect.com/science/article/pii/S0021979784711787.

Carbonaro, M., Maselli, P., Nucara, A., 2012. Relationship between digestibility and secondary structure of raw and thermally treated legume proteins: a Fourier transform infrared (FT-IR) spectroscopic study. Amino acids, 43, 911-921.https://doi.org/10.1007/s00726-011-1151-4.

Casazza, A.A., Spennati, E., Converti, A., Busca, G., 2020. Production of carbon-based biofuels by pyrolysis of exhausted Arthrospira platensis biomass after protein or lipid recovery. Fuel Process. Technol. 201,106336. https://doi.org/10.1016/j.fuproc.2020.106336.

Chalamaiah, M., Yu, W., J. Wu., 2018. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 245,205-222. https://doi.org/10.1016/j.foodchem.2017.10.087.

Chobert, J-M., Bertrand-Harb, C.,Nicolas, M-G.,1998. Solubility and emulsifying properties of Caseins and Whey proteins modified enzymatically by Trypsin. J of Agri, Food Chem. 36,883-892. https://doi.org/10.1021/jf00083a002.

Damoradan, S., Parkin, K., Fennema, O.R., 2010. Química de alimentos de Fennema, Artmed, 4ª ed., São Paulo, 726-730.

Elavarasan, K., Shamasundar, B.A., Badii, F., Howell, N., 2016. Angiotensin I-converting enzyme (ACE) inhibitory activity and structural properties of oven- and freeze-dried protein hydrolysate from fresh water fish (Cirrhinus mrigala). Food Chem. 206, 210-216. https://doi.org/10.1016/j.foodchem.2016.03.047.

X., Cui. Y., Zhang. R., Zhang. X., 2018. Purification and identification of anti-obesity peptides derived from Spirulina platensis. J. Funct. Foods 47,350-360. http//doi.org/10.1016/j.jff.2018.05.066.

Gbogouri, G.A., Linder, M., Fanni. J., Parmentier. M., 2004. Influence of hydrolysis degree on the functional properties of salmon by product hydrolysates. J Food Sci. 69, 615-622. doi:10.1111/j.1365-2621.2004.tb09909.x.

Guil-Guerrero, J.L., Gómez-Mercado, Ramos-Bueno, R.P., González-Fernández. M.J., Urrestarazu, M., Jiménez-Becker, S., Bélair,G.,2018. Fatty acid profiles and sn-2 fatty acid distribution of γ-linolenic acid-rich Borago J.Food Compos. Anal. 66, 74-80. https://doi.org/10.1016/j.jfca.2017.12.005.

Hartree, E.F., 1972. Determination of protein: A modification of the Lowry method that gives a linear photometric response. Anal. Biochem. 48, 422-427. https://doi.org/10.1016/0003-2697(72)90094-2.

Humiski, L.M., Aluko, R.E., 2007. Physicochemical and bitterness properties of enzymatic pea protein hydrolysates. J of Food Sci. 72,605-611. https://doi.org/10.1111/j.1750-3841.2007.00475.x.

Jesus,C.S.,Uebel,L.S.,Costa,S.S.,Miranda,A.L.,Morais,E.G.,Morais,M.G.,Costa,J.A.V.,Nunes,I.,Ferreira,E.S.,Druzian,J.I., 2018. Outdoor pilot-scale cultivation of Spirulina sp. LEB-18 in different geographic locations for evaluating its growth and chemical composition. Bioresour. Technol. 256, 86-94. https://doi.org/10.1016/j.biortech.2018.01.149.

Kapoor, R., Huang, Y.S., 2006. Gamma linolenic acid: an anti-inflammatory omega-6 fatty acid. Curr Pharm Biotechnol. 7, 531-534.

Kristinsson, H. G., Rasco, B. A., 2000. Fish protein hydrolysates: production, biochemical and functional properties. Crit. Rev. Food Sci. and Nutr. 40, 43-8. https://doi.org/10.1080/10408690091189266.

Krunic, T, Z., Obradovic, S.N., Rakin, B.M., 2019. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture. Food Chem. 293, 74-82. https://doi.org/10.1016/j.foodchem.2019.04.062.

Li, Y., Hua, D., Zhang, J., Zhao, Y., Mu, H., Xu, H., 2013. Methane Production From Lipid-extracted Algal Residues. 580e, 1-10.

Liceaga-Gesualdo, A.M, Li-Chan, E.C.Y., 1999. Functional properties of fish protein hydrolysate from herring (Clupea harengus). J Food Sci. 64, 1000-1004. https://doi.org/10.1111/j.1365-2621.1999.tb12268.x.

Lisboa, C.R., Pereira,A.M., Alberto,J.,Costa,V.,2016.Biopeptides with antioxidant activity extracted from the biomass of Spirulina sp. LEB 18. J. Microbiol. Res. 10, 79-86. Doi:10.5897/AJMR2015.7760.

Maina, S., Kachrimanidou, V., Koutinas, A., 2017. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. 8, 18- 23. https://doi.org/10.1016/j.cogsc.2017.07.007.

Maurya,R., Ghosh,T.,Saravaia,H., Paliwal,C., Ghosh, A.,Mishra.,S. 2016. Non-isothermal pyrolysis of de-oiled microalgal biomass: Kinetics and evolved gas analysis, Bioresour. Technol. 221, 251-26. https://doi.org/10.1016/j.biortech.2016.09.022.

Memarpoor-Yazdi, M., Mahaki, H., Zare-Zardinib, H., 2013. Antioxidant activity of protein hydrolysates and purified peptides from Zizyphus jujuba fruits. J. Funct. Foods, 5, 62-70. https://doi.org/10.1016/j.jff.2012.08.004.

Meng, Y.,Yao, C.,Xue,S.,Yang,H.,2014. Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresour. Technol. 151,347-354. https://doi.org/10.1016/j.biortech.2013.10.064.

Montalvo,G.E.B.,Soccol,V.T.,Vandenberghe,P.S.L.,Carvalho,J.C.,Faulds,C.B.,Bertrand,E.,Prad,M.R.M.,Bonatto,S.J.R.,Soccol,C.R.,2019. Arthrospira maxima OF15 biomass cultivation at laboratory and pilot scale from sugarcane vinasse for potential biological new peptide production. Bioresour. Technol. 273,103-113. https://doi.org/10.1016/j.biortech.2018.10.081.

Nirmala, C., V. Prakash, V., L.V. Venkataraman, L.V., 1992. Physico-chemical and functional properties of proteins from spray dried algae (Spirulina platensis). Die Nahrung, 36, 569-577, https://doi.org/10.1002/food.19920360608.

Noman, A., Xu, Y., AL-Bukhaiti, W.Q., Abed, M.S., Ali, H.A., Ramadhan, H.A., Xia, W., 2018. Influence of enzymatic hydrolysis conditions on the degree of hydrolysis conditions on the degree of hydrolysis and functional properties of protein hydrolysate obtained from Chinese sturgeon (Acipenser sinensis) by using papain enzyme. Process Biochem. 67, 19-28. https://doi.org/10.1016/j.procbio.2018.01.009.

Norzagaray-Valenzuela, C.D., Valdez-Ortiz, A., Shelton, L.M., Jimenez-Edeza, M., Rivera-López, J., Valdez-Flores, M.A., German-Báez, L.J., 2017. Residual biomasses and protein hydrolysates of three green microalgae species exhibit antioxidant and anti-aging activity, J App. Phycol. 29,189-198. https://doi.org/10.1007/s10811-016-0938-9.

Pearce, N.K., Kinsella E.J., 1978. Emulsifying properties of proteins: evaluation of a turbidimetric techniques. J Agri. Food Chem. 26, 716-723. https://doi.org/10.1021/jf60217a041.

Pires, C., Teixeira, B., Cardoso, C., Mendes, R., Nunes, M.L., Batista, I., 2015. Cape hake protein hydrolysate prepared from alkaline solubilized proteins pre-treated with citric acid and calcium ions: Functional properties and ACE inhibitory activity, Process Biochem. 50, 1006-1015. http://doi.org/10.1016/j.procbio.2015.03.010.

Pleissner, D., Smetana, S., 2020. Estimation of the economy of heterotrophic microalgae and insect-based food waste utilization processes. Waste Manag. 102,198-203. https://doi.org/10.1016/j.wasman.2019.10.031.

Rashid,N., Rehman,M.S.U., Han, J.I.,2013. Recycling and reuse of spent microalgal biomass for sustainable biofuels. J. Biochem. Eng. 75, 101-107. https://doi.org/10.1016/j.bej.2013.04.001.

M.G., Singhal.S.R., Kamat.Y.M.,2008. Supercritical CO2 extraction of γ-linolenic acid (GLA) from Spirulina platensis ARM 740 using response surface methodology. J of Food Eng. 84,321-326. http:// doi.org/ 10.1016/j.jfoodeng.2007.05.028.

Sanjukta,S., Rai,A.K., A.Muhammed,A.,Jeyaram,K.,Talukdar,N.C 2015. Enhancement of antioxidant properties of two soybean varieties of Sikkim himalayan region by proteolytic Bacillus subtilis J.Funct. Foods 14,650-658. http://dx.doi.org/10.1016/j.jff.2015.02.033.

Shahidi,F., Han,X-Q.,Synowiecki,J.,1995. Production and characterization of protein hydrolysate from capelin (Mallotus villosus). Food Chem., 53,285-293. https://doi.org/10.1016/0308-8146(95)93934-J.

Sharathchandra, K., Rajashekhar, M., 2011.Total lipid and fatty acid composition in some freshwater cyanobacteria. J. Algal Biomass Utln. 2, 83-97.

Shirazi, H.M., Karimi-Sabet, J., Ghotbia, C., 2017. Biodiesel production from Spirulina microalgae feedstock using direct transesterification near supercritical methanol condition. Bioresour. Technol. 239, 378-386. https://doi.org/10.1016/j.biortech.2017.04.073.

Sripokar, P., Benjakul, S., Klomklao, S., 2018. Antioxidant and functional properties of protein hydrolysate obtained from starry triggerfish muscle using trypsin from albacore tuna liver. Biocata. Agri. Biotech. 17,447-454. https://doi.org/10.1016/j.bcab.2018.12.013.

Sumprasit, N., Wagle, N., Glanpracha, A.P.,Annachhatre, A.P.,2017. Biodiesel and biogas recovery from Spirulina platensis. Int. Biodeter. Biodegr, 119,196-204. https://doi.org/10.1016/j.ibiod.2016.11.006.

Torruco-Uco,J., Chel-Guerrero,L., Martínez-Ayala,A., Dávila-Ortiz,G.,D.,Betancur-Ancona,D.G.,2009. Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolues lunatus and Phaseolus vulgaris seeds. Food Sci. Technol. 42, 1597-604.https://doi.org/10.1016/j.lwt.2009.06.006.

Wang, Z., Zhang, X., 2016. Inhibitory effects of small molecular peptides from Spirulina (Arthrospira) platensis on cancer cell growth. Funct. Foods 7,781-788. http://10.1039/C5FO01186H.

Wasswa, J., Tang, J., Gu, X.H., Yuan, X.Q., 2007. Influence of the extent of enzymatic hydrolysis on the functional properties of protein hydrolysate from grass carp (Ctenopharyngodon idella) skin. Food Chem. 104, 1698-1704. https://doi.org/10.1016/j.foodchem.2007.03.044.

Xie, J., Du, M., Shen, M., Wu, T., Lin, L., 2019. Physico-chemical properties, antioxidant activities and angiotensin-I converting enzyme inhibitory of protein hydrolysates from Mung bean (Vigna radiate). Food Chem. 270,243-250. https://doi.org/10.1016/j.foodchem.2018.07.103.

Yang, Z., Guo, R., Xu, X., Fan, X., Luo, S., 2011. Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int. J. Hydrog. Energy 36, 3465-3470. https://doi.org/10.1016/j.ijhydene.2010.12.018.

Yu,J.,Hu,Y.,Xue,M.,Dun,Y., Li,S., Peng,N., Liang,Y., Zhao.,2016. Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. Microbiol. Biotechn. 26, 1216-1223. http://dx.doi.org/10.4014/jmb.1601.01033.

Yu, M., He,S., Tang,M., Zhang,Z., Zhu,Y., Sun,H., 2018. Antioxidant activity and sensory characteristics of Millard reaction products derived from different peptide fractions of soybean meal hydrolysate. Food Chem. 243,249-257.http://doi.org/10.1016/j.foodchem.2017.09.139.

Zarrouk, C., 1966, Contribution a l’etude d’une cyanobacteria: influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. PhD thesis, University of Paris, France.

Zhu, L., Li, Z., Hiltunen, E., 2018. Theoretical assessment of biomethane production from algal residues after biodiesel production. Wiley Interdiscip. Rev. Energy Environ. 7, 1-9. https://doi.org/10.1002/wene.273.

Downloads

Published

04.12.2023

How to Cite

Production and Characterization of Valuable Protein Hydrolysates from De-Oiled Residual Biomass-Spirulina Platensis: Chapter 4. (2023). International Journal of Agricultural and Life Sciences, 47-72. https://skyfox.co/ijals/index.php/als/article/view/102

Similar Articles

1-10 of 33

You may also start an advanced similarity search for this article.